基于MSG-SSD的复合绝缘子憎水性等级智能识别方法
DOI:
CSTR:
作者:
作者单位:

辽宁工程技术大学电气与控制工程学院葫芦岛125105

作者简介:

通讯作者:

中图分类号:

TN911.73;TM216

基金项目:

辽宁省教育厅科学技术研究创新团队项目(LT2019007)、辽宁工程技术大学学科创新团队项目(LNTU20TD-29)资助


Intelligent recognition method for hydrophobicity class of composite insulators based on MSG-SSD
Author:
Affiliation:

Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    复合绝缘子憎水性等级的检测是电力系统巡检中的重要环节,针对现有方法存在检测效率低、实时性差及模型结构复杂的问题,提出一种基于MSG-SSD的复合绝缘子憎水性等级智能识别方法。首先,检测模型以SSD算法为基准,采用轻量级MobileNetV2作为主干网络,在提升模型检测速度的同时实现网络的轻量化;其次,为增强对水迹特征的提取能力,构建高分辨率特征融合模块Sim-HRFPN,在特征融合的同时保留高分辨率的特征,以弥补因轻量化造成的精度损失;最后,为进一步提高模型的计算效率,将GhostConv替换额外预测特征层的传统卷积,在保持模型高性能的同时,减轻了计算负担。实验结果表明,相较于SSD,MSG-SSD的检测速度和检测精度分别提高48.17%和4.89%,计算量和参数量分别减少97.63%和82.99%。由此可知,改进模型不仅能精准识别和快速定位复合绝缘子的憎水性等级,而且满足边缘巡检设备轻量化部署的需求,为电力系统中复合绝缘子运行状态的智能检测提供了一种行之有效的方法。

    Abstract:

    Detecting composite insulator hydrophobicity class is critical in power system inspections. This study proposes an intelligent recognition method for the hydrophobicity class of composite insulators based on MSG-SSD to address the challenges of low detection efficiency, poor real-time performance, and complex model structures in existing methods. Firstly, the detection model is based on the SSD algorithm, employing the lightweight MobileNetV2 as the backbone network to simplify the network and significantly enhance detection speed. Secondly, to improve the extraction capability of watermark features, a high-resolution feature fusion module, Sim-HRFPN, is constructed, which retains high-resolution features during the fusion process to compensate for the accuracy loss caused by the lightweight design. Finally, to further enhance the computational efficiency of the model, traditional convolution is replaced with GhostConv in the additional prediction feature layers, thereby significantly reducing the computational burden while maintaining the high performance of the model. The results indicate that, compared to SSD, MSG-SSD achieves a 48.17% improvement in detection speed and a 4.89% improvement in accuracy, while reducing computational cost and parameter count by 97.63% and 82.99%, respectively. From this, it can be concluded that the improved model accurately identifies and rapidly locates the hydrophobicity class of composite insulators and meets the lightweight deployment requirements of edge inspection devices. This provides an effective method for the intelligent detection of the operational status of composite insulators in power systems.

    参考文献
    相似文献
    引证文献
引用本文

陈伟华,马士博,闫孝姮,李健华.基于MSG-SSD的复合绝缘子憎水性等级智能识别方法[J].电子测量与仪器学报,2025,39(1):234-243

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码