基于Koopman算子与一维自编码卷积神经网络的模拟电路软故障诊断
DOI:
CSTR:
作者:
作者单位:

1.湖南师范大学物理与电子科学学院长沙410081;2.武汉大学电气与自动化学院武汉430072

作者简介:

通讯作者:

中图分类号:

TP206;TN710

基金项目:

智能电网重大专项(2030)项目(2024ZD0801300)资助


Soft fault diagnosis of analog circuits using 1D self coding convolution neural network and Koopman operator
Author:
Affiliation:

1.School of Physics and Electronic Science, Hunan Normal University,Changsha 410081,China; 2.School of Electrical and Automation, Wuhan University, Wuhan 430072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模拟电路是现代电子系统中的核心组成部分,随着电子设备日益复杂,传统的故障诊断方法已无法应对现代模拟电路中的故障检测需求,尤其是在软故障诊断中,因信号响应相似而导致故障定位困难。为解决这一问题,提出了一种基于Koopman算子的纯数据驱动故障检测方法。首先,通过延迟嵌入法构建Hankel矩阵,将电路输出信号映射至高维空间,从而实现系统全局线性化;然后,利用动态模式分解求解Koopman算子,在Koopman算子的特征空间内分析模态分布及信号的模态能量占比,通过提取储存特征值变化的范德蒙矩阵得到关键模态,来构建具有良好可区分度的特征向量;最后,将其输入到卷积神经网络中来完成故障识别。为验证该方法的有效性,搭建了基于Pspice与Simulink的四运放双二阶高通滤波器电路的联合仿真模型,利用 SLPS 模块结合电路网表实现模拟电路状态参数自动采集。实验结果表明,所提出的方法具有较高的准确精度,平均准确率99.86%,高于其他方法。

    Abstract:

    Analog circuits are the core components of modern electronic systems, and as electronic devices become increasingly complex, traditional fault diagnosis methods are no longer able to meet the demand for fault detection in modern analog circuits, especially in soft fault diagnosis, where similar signal responses make fault localization difficult. To solve this problem, a pure data-driven fault detection method based on the Koopman operator is proposed. First, the Hankel matrix is constructed through the delay embedding method, which maps the circuit output signal to a high-dimensional space and achieves system global linearization. Then, the Koopman operator is solved using dynamic mode decomposition, and the modal distribution and signal modal energy ratio are analyzed in the Koopman operator’s eigenfunction space. By extracting the Van der Monde matrix that stores the changes in the eigenvalue, the critical modes are obtained to construct a feature vector with good discriminability. Finally, it is input into a convolutional neural network to complete the fault identification. To verify the effectiveness of the method, a joint simulation model of a four-op-amp dual second-order high-pass filter circuit based on Pspice and Simulink was established, and the circuit state parameters were automatically collected using the SLPS module combined with the circuit netlist. The experimental results show that the proposed method has a high accuracy, with an average accuracy of 99.86%, which is higher than other methods.

    参考文献
    相似文献
    引证文献
引用本文

段涛,刘美容,高雄,何怡刚.基于Koopman算子与一维自编码卷积神经网络的模拟电路软故障诊断[J].电子测量与仪器学报,2025,39(3):92-101

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码