基于随机森林的管道漏磁缺陷检测与量化
DOI:
CSTR:
作者:
作者单位:

1.天津大学电气自动化与信息工程学院天津300072;2.北京华航海鹰新技术开发有限责任公司北京100013

作者简介:

通讯作者:

中图分类号:

TN081

基金项目:


Detection and quantification of pipeline magnetic flux leakage defects based on random forest
Author:
Affiliation:

1.School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072,China; 2.Beijing Huahang Haiying New Technology Development Co., Ltd., Beijing 100013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    油气管道的缺陷尺寸量化是管道检测的关键问题和最终目标。传统的缺陷检测方法往往停留在缺陷分类的阶段,数据处理不具体给后续结果分析增加了难度;智能识别方法又对漏磁数据的质量有更高要求。因此提出一种粒子群优化算法结合随机森林(PSO-RF),实现管道缺陷长、宽、深的自动量化。首先对一组缺陷漏磁数据进行多维度的特征提取,然后利用随机森林算法进行回归预测;针对随机森林算法最佳参数不宜获得的难点,使用粒子群优化算法进行超参数调优,最终获得比较准确的缺陷长、宽、深预测数据。将PSO-RF算法与经典的卷积神经网络和粒子群算法支持向量回归(PSO-SVR)训练算法进行对比,对长、宽、深的量化精度分别提高了28%、32%、68%,验证了PSO-RF算法的有效性与优越性。最后使用一组带标签的管道缺陷数据对算法进行验证,长、宽、深量化误差在20%以内的数据分别达到80.3%、88.5%和95.9%。

    Abstract:

    The quantification of defect size in oil and gas pipelines is a key issue and ultimate goal of pipeline inspection. Traditional defect detection methods often remain in the stage of defect classification, and the lack of detailed data increases the difficulty of subsequent processing; Intelligent recognition methods have higher requirements for the quality of magnetic leakage data however. Therefore, a combining particle swarm optimization and random forest (PSO-RF) is proposed to quantify the length, width, and depth of pipeline defects. Firstly, multi-dimensional feature extraction is performed on a set of defect magnetic leakage data, and then the random forest algorithm is used for regression prediction; In view of the difficulty of obtaining the best parameters of random forest algorithm, particle swarm optimization algorithm is used to optimize the hyperparameters, and finally more accurate prediction data of defect length, width and depth are obtained. The PSO-RF algorithm was compared with classical CNN and PSO-SVR training algorithms. The quantization accuracy of length, width and depth was improved by 28%, 32% and 68% respectively, verifying the effectiveness and superiority of the PSO-RF algorithm. Finally, a set of labeled pipeline defect data was used to validate the algorithm, and the data with quantization errors of length, width and depth within 20% achieved 80.3%, 88.5% and 95.9% respectively.

    参考文献
    相似文献
    引证文献
引用本文

石晴,张国山,刚蓓,李志华,胡家铖,刘思娇.基于随机森林的管道漏磁缺陷检测与量化[J].电子测量与仪器学报,2025,39(3):199-207

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码