基于FBSE-ESEWT的齿轮故障诊断方法*
DOI:
CSTR:
作者:
作者单位:

1.天津科技大学;2.天津城建大学计算机与信息工程学院;3.内蒙古科学技术研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

内蒙古自治区重点研发和成果转化计划项目(2023YFJM0007)、内蒙古自治区自然科学(2024ZD26)资助


Gear fault diagnosis method based on FBSE-ESEWT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,本文以傅里叶贝塞尔级数展开(Fourier–Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(Energy Scale Space Empirical Wavelet Transform, ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始EWT、EMD等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96dB,诊断准确率高达98.03%。

    Abstract:

    Aiming at the problem that vibration signals collected in gear fault diagnosis are often accompanied by noise interference and fault features are difficult to extract, this paper is based on Fourier-Bessel series expansion (FBSE). A noise reduction method of gear vibration signal (FBSE-ESEWT), which combines FBSE and Energy Scale Space Empirical Wavelet Transform (ESEWT), is proposed. Firstly, the frequency spectrum of the acquired gear vibration signal is obtained by using FBSE technology to replace the traditional Fourier spectrum. Then, the obtained FBSE frequency spectrum is adaptive segmtioned and screened by using the energy scale space partitioning method to accurately locate the boundary points of the effective frequency band. Then the signal components are obtained by constructing wavelet filter banks and reconstructed to reduce noise and redundant information interference. Then, in order to capture more comprehensive feature information, the processed signal is transformed by generalized S-transform to obtain time-frequency graph, and 2D convolutional neural network is input for fault diagnosis to verify the feasibility of the algorithm. Through experiments on Simulink simulation signals and actual acquisition signals, the results show that compared with the original EWT, EMD and other methods, FBSE-ESEWT has better noise reduction effect, the signal-to-noise ratio is increased by 13.96dB, and the diagnosis accuracy is up to 98.03%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-03
  • 最后修改日期:2025-02-07
  • 录用日期:2025-02-11
  • 在线发布日期:
  • 出版日期:
文章二维码