RBF-MLP网络干扰补偿的电动扬声器反步滑模控制
DOI:
CSTR:
作者:
作者单位:

中国人民公安大学信息网络安全学院北京100038

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

中国人民公安大学双一流创新研究项目(2023SYL08)资助


Backstepping sliding mode control of electric loudspeakers with RBF-MLP network interference compensation
Author:
Affiliation:

School of Information and Network Security, People’s Public Security University of China, Beijing 100038, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非线性元件会导致扬声器控制过程中产生较大的建模误差和控制延迟,精确控制扬声器音圈的运动,还能提升音质,减少机械部件的磨损老化。针对电动扬声器音圈精细控制中建模误差和控制延迟问题,设计了一种基于改进的RBF-MLP神经网络的反步滑模控制器,解决了电动扬声器中非线性元件造成的控制干扰与经典RBF神经网络对复杂非线性模型拟合精度不足的问题。通过引入感知层,自适应学习机制和广义径向基函数,改进的RBF-MLP网络拟合非线性函数的均方误差相比经典网络降低了超过5%,增强了对扬声器系统复杂非线性特性的捕捉能力,提升了模型的拟合精度。通过构建仿真环境,对扬声器系统在不同频率、幅度和负载条件下的控制性能进行评估,重点考察了控制精度、系统延迟和抖振问题。实验结果表明,在不同频率和负载条件下,控制延迟平均减少至0.15 ms,控制误差降低了39%。此外,改进后的控制方法在复杂负载和频率变化条件下依然保持了良好的鲁棒性和稳定性。这些结果展示了改进的控制器在电动扬声器控制中的广泛应用潜力。

    Abstract:

    Nonlinear elements cause significant modeling errors and control delays in speaker control processes, which affect the precise control of the speaker voice coil’s motion. This not only improves sound quality but also reduces mechanical wear and aging. This paper addresses the problems of modeling errors and control delays in the fine control of the speaker’s voice coil. We design a backstepping sliding mode controller based on an improved RBF-MLP neural network, solving the issues of control interference caused by nonlinear elements in electric speakers and the insufficient accuracy of the classical RBF network in fitting complex nonlinear models. By introducing perception layers, adaptive learning mechanisms, and generalized radial basis function, the improved RBF-MLP network reduces the mean squared error of nonlinear function fitting by more than 5% compared to the classical network, enhancing its ability to capture complex nonlinear characteristics of the speaker system and improving model fitting accuracy. A simulation environment was built to evaluate the control performance of the speaker system under different frequency, amplitude, and load conditions, focusing on control precision, system delay, and chattering problems. The experimental results show that under varying frequency and load conditions, the control delay is reduced to an average of 0.15 ms, and control errors are decreased by 39%. Furthermore, the improved control method maintains excellent robustness and stability under complex load and frequency variations. These results demonstrate the broad application potential of the improved controller in electric speaker control systems.

    参考文献
    相似文献
    引证文献
引用本文

赵景玉,李志远,刘扬,张传营,卜凡亮. RBF-MLP网络干扰补偿的电动扬声器反步滑模控制[J].电子测量与仪器学报,2024,38(12):135-144

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码