液体光学调控的智能深度测量方法研究
DOI:
CSTR:
作者:
作者单位:

国防科技大学智能科学学院长沙410073

作者简介:

通讯作者:

中图分类号:

TH74;TN942

基金项目:

国家自然科学基金(62305386)、湖南省自然科学基金(2022JJ40554)项目资助


Research on intelligent depth measurement method with liquid optical control
Author:
Affiliation:

School of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    着眼于提升变焦成像深度测量的精度与实时性,在给出系统设计构型的基础上,利用液体透镜调节特性与神经网络技术,提出了一种液体光学调控的新型单目视觉深度测量方法。首先,为消除液体重力效应引入光轴漂移对测量结果的影响,以目标图像面积之比作为特征参量,并给出了基于链码分类与条状分割的目标面积测算方法。然后,为描述液体透镜参数、图像特征量与目标深度之间的映射关系,构建了液体单目深度测量的神经网络模型,并通过遗传算法对模型参数进行优化。再者,对液体透镜参数进行标定获取光焦度函数,基于数据集训练得到用于深度测量的神经网络,其预测平均相对误差为0.799%。最后,设计实验对该方法进行测试验证,不同物距目标的深度测量误差平均为2.86%,其测量速度平均为108.2 ms,在1 000 mm物距条件下对不同形状目标的测量误差不超过3.60%。结果表明,融合液体光学调控与神经网络预测的单目视觉方法能够实现高精度、快速的深度测量,并且对不同形状目标均表现出较好的泛化性能。研究成果为克服变焦成像测距法的现有局限性提供了新的技术思路。

    Abstract:

    Aiming at improving the accuracy and real-time performance of zoom imaging depth measurement, based on the given system design configuration, a new monocular visual depth measurement method with liquid optical control is proposed by utilizing liquid lens adjustment characteristics and neural network technology. Firstly, to eliminate the influence of optical axis drift induced by the liquid gravity factor on the measurement results, the ratio of target image area is adopted as the feature parameter. A target area calculation method based on chain code classification and strip segmentation is presented. Then, in order to describe the mapping relationship between liquid lens parameters, image feature quantity and target depth, a neural network model of liquid monocular depth measurement is constructed, and the model parameters are optimized by genetic algorithm. Furthermore, the focal power function is obtained by calibrating the parameters of the liquid lens. The neural network trained on the dataset for depth measurement has an average prediction relative error of 0.799%. Finally, an experiment is designed to test and verify the method. The average depth measurement error of targets with different distances is 2.86%, and the average measurement speed is 108.2 ms. The measurement error for targets of different shapes at a distance of 1 000 mm shall not exceed 3.60%. The results show that the monocular vision method combining liquid optical control and neural network prediction can achieve high-precision and fast depth measurement, and has good generalization performance for different shapes of objects. The research provide a new technical idea for overcoming the existing limitations of zoom imaging ranging method.

    参考文献
    相似文献
    引证文献
引用本文

甘子豪,洪华杰,刘召阳,吕建明,张萌.液体光学调控的智能深度测量方法研究[J].电子测量与仪器学报,2024,38(12):26-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码