基于呼吸道黏液拉曼光谱的肺炎分类方法研究
DOI:
CSTR:
作者:
作者单位:

1.天津大学精密仪器与光电子工程学院天津300072;2.天津大学医学院天津300072; 3.天津市儿童医院天津300074

作者简介:

通讯作者:

中图分类号:

TN247;O436.2

基金项目:

国家自然科学基金(81871396,81971657)、天津市自然科学基金重点项目(20JCZDJC00630)项目资助


Classification of pneumonia based on Raman spectroscopy of respiratory mucus
Author:
Affiliation:

1.School of Precision Instrument and OptoElectronics Engineering, Tianjin University, Tianjin 300072, China; 2.Medical School of Tianjin University, Tianjin 300072, China; 3.Tianjin Children’s Hospital, Tianjin 300074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    肺炎作为全球范围内一种常见的呼吸道感染性疾病,易于引发各类并发症,因此其精准的分类是临床肺炎诊断及治疗面临的关键问题。针对呼吸道感染及肺炎精准分类的诊断需要,通过研究基于呼吸道黏液拉曼光谱的技术,发展一种有效的肺炎分类诊断方法。首先收集正常、普通肺炎以及并发塑性支气管炎的肺炎患者的呼吸道黏液样品,通过拉曼光谱技术分析各组样品中的黏蛋白糖基化和纤维化过程对应的成分及分子键变化,准确识别出疾病相关的分子特征和化学变化。再结合主成分分析和偏最小二乘判别方法,构建一个能够区分不同类型肺炎的分类模型。实验结果显示,该模型在肺炎分类上表现出较高的准确性,总体分类准确率可达到99.08%,其中普通肺炎和并发塑性支气管炎肺炎的区分准确率分别高达100%和97.4%。研究中的基于分子光谱的肺炎分类方法,不仅证实了拉曼光谱技术在感染性疾病诊断中的应用潜力,也为未来在更广泛的感染性疾病诊断中使用分子光谱技术提供了参考。

    Abstract:

    Pneumonia, a common respiratory infection worldwide, often leads to various complications, making its precise classification a critical issue in clinical diagnosis and treatment. This study addresses the need for accurate classification of respiratory infections and pneumonia by developing an effective diagnostic method based on the Raman spectroscopy of respiratory mucus. Initially, respiratory mucus samples from normal individuals, patients with common pneumonia, and those with concomitant plastic bronchitis were collected. Through Raman spectroscopic analysis, molecular features and chemical changes related to mucin glycosylation and fibrosis in each group were accurately identified, detailing the components and molecular bond alterations associated with the disease. Subsequently, combining principal component analysis and partial least squares discriminant analysis, a classification model capable of distinguishing between different types of pneumonia was constructed. Experimental results demonstrated high accuracy of the model in classifying pneumonia, with an overall classification accuracy reaching 99.08%, and specifically, 100% and 97.4% accuracy in distinguishing common pneumonia and plastic bronchitis, respectively. The study not only confirms the potential of Raman spectroscopy in the diagnosis of infectious diseases but also provides a reference for the broader application of molecular spectroscopic techniques in infectious disease diagnostics.

    参考文献
    相似文献
    引证文献
引用本文

白雪,李晨曦,翟嘉,邹映雪,刘蓉,陈文亮.基于呼吸道黏液拉曼光谱的肺炎分类方法研究[J].电子测量与仪器学报,2024,38(11):126-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-13
  • 出版日期:
文章二维码