基于ITPA-Informer的新能源汽车动力电池可充电容量预测
DOI:
CSTR:
作者:
作者单位:

1.辽宁工程技术大学电气与控制工程学院葫芦岛125000;2.辽宁工程技术大学应用技术与 经济管理学院阜新123000;3.辽宁工程技术大学机械工程学院阜新123000

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

国家自然科学基金(52104160)项目资助


Rechargeable capacity prediction of new energy vehicle power battery based on ITPA-Informer
Author:
Affiliation:

1.School of Electrical and Control Engineering, Liaoning Technical University, Huludao 125000, China; 2.School of Applied Technology and Economics Management, Liaoning Technical University, Fuxin 123000, China; 3.School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着新能源汽车的大范围推广,其核心部件——动力电池的状态评估和可充电容量的准确预测对于评估新能源汽车的可靠性、续航里程和剩余价值意义重大。提出了一种基于ITPAInformer模型的新能源汽车动力电池可充电容量预测方法,首先通过安时积分法结合卡尔曼滤波来估算可充电容量,并通过两阶段特征工程(递归特征消除和核主成分分析)来筛选特征并降维,以缓解实际工况下的维数灾难。模型方面,在Informer模型的Decoder中引入了改进的时间模式注意力机制,提取了除采样时间间隔外不同时间尺度下的特征,通过指数衰减因子调整每个时间步对当前预测的贡献度,增强可充电容量随行驶里程增加而逐渐降低的时序依赖性。实验结果表明,所提出的模型在多个评价指标上均优于传统的卷积神经网络(CNN)、长短期记忆(LSTM)和门控循环单元(GRU)模型,并且在不同月份下的运行数据验证了模型具有较好的泛化能力。

    Abstract:

    With the extensive promotion of new energy vehicles, the state assessment of their core componentpower batteries and the accurate prediction of rechargeable capacity (RC) are of considerable significance for evaluating the reliability, driving range and residual value of new energy vehicles. This paper presents a prediction method for the rechargeable capacity of new energy vehicle power batteries based on the ITPA-Informer model. Firstly, the rechargeable capacity is estimated by the ampere-hour integration method in combination with the Kalman filter, and two-stage feature engineering (recursive feature elimination and kernel principal component analysis) is employed to select features and reduce dimensions to alleviate the curse of dimensionality in actual working conditions. regarding model, an improved time pattern attention (ITPA) mechanism is introduced in the decoder of the Informer model to extract features at different time scales apart from the sampling time interval. The contribution of each time step to the current prediction is adjusted by an exponential decay factor to enhance the temporal dependency of the rechargeable capacity gradually decreasing with the increase of driving mileage. The experimental results indicate that the proposed model outperforms traditional CNN, LSTM and GRU models in multiple evaluation metrics, and the operation data in different months verify that the model possesses good generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

张帅博,赫飞,李宝峰.基于ITPA-Informer的新能源汽车动力电池可充电容量预测[J].电子测量与仪器学报,2025,39(3):53-64

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码