基于CNN-STA-DLSTM模型的间歇过程质量预测
DOI:
CSTR:
作者:
作者单位:

1.兰州理工大学电气工程与信息工程学院兰州730050;2.兰州理工大学国家级电气与控制工程 实验教学中心兰州730050;3.兰州石化职业技术大学电子电气工程学院兰州730060

作者简介:

通讯作者:

中图分类号:

TP277;TN06

基金项目:

国家自然科学基金(62263021)、兰州市青年科技人才创新项目(2023-QN-36)、甘肃省高校青年博士支持项目(2024QB-037)资助


Batch process quality prediction based on CNN-STA-DLSTM model
Author:
Affiliation:

1.School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2.National Experimental Teaching Center of Electrical and Control Engineering,Lanzhou University of Technology, Lanzhou 730050, China; 3.School of Electronic and Electrical Engineering, Lanzhou Petrochemical University of Vocational Technology, Lanzhou 730060, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于间歇过程变量深层特征提取困难,以及变量的时序性、非线性、动态特性所导致质量预测精度不高的问题,提出了一种基于卷积时空注意力的双层长短期神经网络(convolutional neural networks spatial and temporal attention with double long short term memory networks,CNN-STA-DLSTM)的间歇过程质量预测模型。首先,对间歇过程数据沿着变量的方向展开成二维矩阵,对二维数据采用Max-Min法归一化,接着,使用PLS对原始数据降维,保留与质量变量相关性较强的变量,使用CNN挖掘过程数据的潜在特征,提高质量相关特征信息的关注;其次,引入时间注意力机制和空间注意力机制构建双层LSTM的编码器-解码器结构网络,利用注意力机制自适应地学习时间步长的相关历史信息,以提高模型的长期记忆能力,并加强过程变量与质量变量之间的时空相关性;然后,采用随机网格搜索法寻找预测模型合适的超参数,并构建了预测模型;最后,使用青霉素发酵仿真平台和带钢热连轧生产过程数据进行实验验证,结果表明所提模型具有更精准的预测效果。

    Abstract:

    For the difficulty in extracting deep features of batch process variables, as well as low quality prediction accuracy caused by the temporal, nonlinear, and dynamic characteristics of variables, this article proposes a quality prediction model for batch processes based on convolutional neural networks spatial and temporal attention with double long short term memory networks (CNN-STA-DLSTM). Firstly, the three-dimensional data of the batch process are expanded into a two-dimensional matrix along the direction of the variables, and the two-dimensional data are normalized by the Max-Min method. Then, the partial least squares (PLS) method is used to reduce the dimension of the original data, and the variables with strong correlation with the quality variables are retained. The convolutional neural network (CNN) is used to mine the potential features of the process data and improve the attention of the quality-related feature information. Secondly, the temporal attention mechanism and the spatial attention mechanism are introduced to construct the encoder-decoder structure network of the double-layer LSTM, and the attention mechanism is used to adaptively learn the relevant historical information of the time step, so as to improve the long-term memory ability of the model and strengthen the spatio-temporal correlation between the process variables and the quality variables. Then, the random-grid search method is used to optimize the hyperparameters of the prediction model, and the prediction model is constructed. Finally, the penicillin fermentation simulation platform and the hot strip rolling production process data are used for experimental verification. The results show that the proposed model has more accurate prediction effect.

    参考文献
    相似文献
    引证文献
引用本文

惠永永,孙凯文,脱奔奔,陈鹏,赵小强.基于CNN-STA-DLSTM模型的间歇过程质量预测[J].电子测量与仪器学报,2024,38(11):168-181

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-13
  • 出版日期:
文章二维码