面向无人驾驶的多任务环境感知算法研究
DOI:
CSTR:
作者:
作者单位:

沈阳理工大学自动化与电气工程学院沈阳110159

作者简介:

通讯作者:

中图分类号:

TP391.41; TN971.+1

基金项目:

沈阳市中青年科技创新人才支持计划项目(RC210247)、辽宁省属本科高校基本科研业务费专项资金(LJ212410144053)项目资助


Research on multi-task environment perception algorithm for unmanned driving
Author:
Affiliation:

School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在无人驾驶技术中,多任务环境感知算法是确保无人驾驶汽车,在复杂交通环境中安全运行的关键技术之一。针对现有环境感知算法在处理复杂驾驶场景时存在的因天气、光照、遮挡等因素导致的鲁棒性差,出现漏检、分割边界模糊等问题,基于HybridNets网络进行改进,提出了一种高性能混合网络IPHNet,以更准确地完成实时感知任务。该网络使用解码器-编码器结构,采用改进EfficientNetV2-S作为主干网络,增强特征提取能力和处理速度。通过重构BiFPN来增加不同层级中间信息的特征融合,引入轻量化上采样模块DySample减少模型复杂度,保留更多信息。创新性设计了分割模块(SPN),极大地保证了对底层信息提取的完整性与准确性。在BDD100K数据集上的实验表明,与基线网络HybridNets相比,IPHNet在车辆检测任务上mAP达到81.4%,提高了4.1%;车道线分割任务上准确率达到86.84%,提高了1.44%,IoU达到33.32%,提高了1.72%;可行驶区域划分任务上mIoU提高了1.8%;FPS达到34,验证了IPHNet具备一定实时处理能力。

    Abstract:

    In autonomous driving technology, multi-task environment perception algorithm is one of the key technologies to ensure the safe operation of driverless vehicles in complex traffic environments. In view of the poor robustness of the existing environment perception algorithms in dealing with complex driving scenarios caused by weather, illumination, occlusion and other factors, and the problems of missed detection, and blurred segmentation boundary, an improved high-performance hybrid network IPHNet based on HybridNets network is proposed to more accurately complete real-time perception tasks. This network uses a decoder-encoder structure and adopts an improved EfficientNetV2-S as the backbone network to enhance feature extraction capability and processing speed. By reconstructing BiFPN to increase the feature fusion of intermediate information of different levels, the lightweight up-sampling module DySample is introduced to reduce the complexity of the model and retain more information. The innovative design of the segmentation module (SPN) greatly ensures the integrity and accuracy of the underlying information extraction. Experiments on BDD100K dataset show that compared with the baseline network HybridNets, IPHNet achieves 81.4% mAP on vehicle detection tasks, which is improved by 4.1%. The accuracy of the lane line segmentation task reaches 86.84%, which is increased by 1.44%, and the IoU reaches 33.32%, which is increases by 1.72%. The mIoU of the drivable area division task is increased by 1.8%. The FPS reaches 34, which verified that IPHNet has a certain real-time processing capability.

    参考文献
    相似文献
    引证文献
引用本文

宋建辉,刘鑫,庄爽,赵亚威,刘晓阳.面向无人驾驶的多任务环境感知算法研究[J].电子测量与仪器学报,2025,39(1):122-132

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码