机器人大模型发展与挑战
DOI:
CSTR:
作者:
作者单位:

1.荆楚理工学院新能源学院荆门448000;2.荆楚理工学院智能制造与先进技术应用研究所荆门448000

作者简介:

通讯作者:

中图分类号:

TP242.6;TN98

基金项目:

荆门市科技计划项目(2023YFYB040)、湖北省高等学校优秀中青年科技创新团队项目(T2021028)、荆楚理工学院教学研究项目(JX2023-014)资助


Robotic large model development and challenges
Author:
Affiliation:

1.College of New Energy, Jingchu University of Technology, Jingmen 448000, China; 2.Institute of Intelligent Manufacturing and Advanced Technology Application, Jingchu University of Technology, Jingmen 448000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来预训练大模型的研究取得了显著成就,本文论述了预训练大模型在机器人技术中的应用。机器人中的传统深度学习模型是在为特定任务定制的小数据集上训练的,这限制了它们在不同应用中的适应性。相比之下,在互联网规模数据上预训练的大模型似乎具有优越的泛化能力,并且在某些情况下显示出一种探索能力,在训练数据中未出现的情况下可以找到one-shot解决方案。大模型具有增强机器人自主性任务的各个组成部分的潜力,从感知到决策和控制。本文研究了最近使用或建立大模型来解决机器人问题的论文,探讨了大模型如何有助于提高机器人在感知、决策和控制领域的能力,从而推动机器人大模型在更多领域实现应用落地。同时,讨论了阻碍大模型在机器人自主系统中应用的挑战,如机器人应用中的数据稀缺性、机器人自身的可变性、多模态表示的局限性和实时性能,并为未来的改进提供了机会和潜在的方法。

    Abstract:

    The research on pre-trained large models has made remarkable achievements in recent years, this paper reviews the application of pre-trained large model in robotics. Traditional deep learning models in robots were trained on small datasets customized for specific tasks, which limits their adaptability in different applications. In contrast, large models pre-trained on internet-scale data appear to have superior generalization capabilities and in some cases show an exploratory ability to find one-shot solutions where they are not present in the training data. The underlying model has the potential to enhance the various components of a robot’s autonomous task, from perception to decision making and control. This paper examines recent papers that use or build large models to solve robotics problems, exploring how large models can help improve robots’ capabilities in the areas of perception, decision making, and control, thereby promoting the application of large robot models in more fields. Meanwhile, the challenges that hinder the application of large models in robotic autonomous systems were discussed in this paper, such as data scarcity in robotic applications, the variability of robots themselves, the limitations of multimodal representations, and real-time performance, and provides opportunities and potential approaches for future improvements.

    参考文献
    相似文献
    引证文献
引用本文

邓鹏,唐文涛,罗静.机器人大模型发展与挑战[J].电子测量与仪器学报,2024,38(12):12-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码