不平衡数据下的轻量化轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.兰州理工大学电气工程与信息工程学院兰州730050;2.兰州理工大学甘肃省工业过程先进控制重点实验室 兰州730050;3.兰州理工大学国家级电气与控制工程实验教学中心兰州730050

作者简介:

通讯作者:

中图分类号:

TH133.3;TN911.7

基金项目:

国家自然科学基金(62263021)、甘肃省教育厅产业支撑项目(2021CYZC-02)资助


Fault diagnosis method for lightweight bearings under unbalanced data
Author:
Affiliation:

1.School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050,China; 2.Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050,China;3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对深层网络特征参数量大和故障类别样本数量不平衡导致轴承故障诊断效果差的问题,提出了一种不平衡数据下的轻量化轴承故障诊断方法。首先,将传感器所采集的一维振动信号重构为二维灰度图作为模型输入;其次,设计了非对称多尺度特征提取模块,利用不同尺度的卷积和空洞卷积对输入信号进行特征提取,并将一部分特征映射到原始空间用于去除噪声和还原原始数据结构;紧接着,被提取的丰富特征信息送入所设计的通道位置双加权模块利用反通道卷积和局部均值的方法对关键通道和关键位置特征进行双向加权;然后,设计了深度可分离卷积(DSC)密集残差结构,在保证网络轻量化的同时增加各层网络的特征融合,并通过快捷路径优化了反向传播性能;最后,利用焦点损失函数根据不同故障类别的重要性调整模型的学习过程,从而更好地适应不平衡的数据分布。利用美国凯斯西储大学轴承数据集和本实验数据集实验验证,结果表明,所提方法在不平衡数据集下故障诊断准确率最高,轻量化程度最好,并具有较好的抗噪性能。

    Abstract:

    To address the problem of poor bearing fault diagnosis due to the large amount of deep network feature parameters and the unbalanced number of fault category samples, this paper proposes a lightweight bearing fault diagnosis method under unbalanced data. Firstly, the one-dimensional vibration signals collected by the sensors are reconstructed into a two-dimensional grey scale map as model input.Secondly, an asymmetric multi-scale feature extraction module is designed to extract features from the input signal using convolution and null convolution at different scales, and a part of the features are mapped to the original space for removing noise and restoring the original data structure. Next, the extracted rich feature information is fed to the channel position bi-weighting module to bi-directionally weight the key channel and key position features using inverse channel convolution and local averaging. Then, a depthwise separable convolution (DSC) dense residual structure is designed to increase the feature fusion of each layer of the network while keeping the network lightweight and optimize the backpropagation performance through shortcut paths. Finally, the focal loss function is used to adjust the learning process of the model according to the importance of different fault categories, thus better adapting to the unbalanced data distribution.

    参考文献
    相似文献
    引证文献
引用本文

赵小强,李森.不平衡数据下的轻量化轴承故障诊断方法[J].电子测量与仪器学报,2024,38(10):244-254

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知