基于2D-SPWVD与PCA-SSA-RF的超宽带雷达人体跌落动作辨识方法
DOI:
CSTR:
作者:
作者单位:

辽宁工程技术大学电气与控制工程学院葫芦岛125105

作者简介:

通讯作者:

中图分类号:

TN95

基金项目:

辽宁省应用基础研究计划项目(2023JH2/101300138)、辽宁省教育厅基本科研项目(重点攻关项目)(LJKZZ20220046,JYTZD2023075)、辽宁“百千万人才工程”培养经费资助项目(2021921083)


Human drop action recognition method based on 2D-SPWVD and PCA-SSA-RF for ultra-wideband Radar
Author:
Affiliation:

School of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有超宽带雷达人体姿态识别研究领域缺少对相似动作辨识的问题,提出一种时频分析结合随机森林(RF)的动作辨识模型。提出基于平滑伪维格纳威利分布(SPWVD)的二维平滑伪维格纳-威利分布(2D-SPWVD)时频分析方法,对预处理后的人体动作回波信号进行时频特征提取;利用主成分分析法(PCA)对特征矢量进行降维处理,选择累计贡献率较高的前30个主成分作为新的特征矢量输入到麻雀搜索算法(SSA)优化的RF分类模型中,用于有障碍条件下5种不同人体相似跌落动作辨识。实验结果表明:预处理算法有效地提升了动作回波信号信噪比,PCA-SSA-RF分类模型能有效辨识5种不同人体跌落动作,克服了数据的特殊性以及障碍物的干扰,准确率高达96.6%。在实时数据流中的跌倒检测任务中,模型的分类平均准确率达到了93%,并与RF、PSO-RF等多个不同经典分类模型深入对比,准确率较高且整体所需时间较短,兼具了准确性和分类效率。验证了所提方法的优越性与有效性。

    Abstract:

    Aiming at the deficiency of similar motion recognition in the current UWB radar attitude recognition research domain, a motion recognition model integrating time-frequency analysis and random forest (RF) is proposed. A time-frequency analysis method of two-dimensional smoothed pseudo Wigner-Ville distribution (2D-SPWVD) based on smoothed pseudo Wigner-Ville distribution (SPWVD) is proposed to extract the time-frequency features of the preprocessed human motion echo signals. Principal component analysis (PCA) was employed to reduce the dimension of the feature vectors, and the top 30 principal components with a high cumulative contribution rate were selected as new feature vectors to be input into the RF classification model optimized by sparrow search algorithm (SSA) for the identification of five distinct human similar drop actions in the presence of obstacles. The experimental outcomes demonstrate that the pretreatment algorithm can effectively enhance the SNR of the action echo signal, and the PCA-SSA-RF classification model can effectively distinguish five different human fall movements, overcome the particularity of data and the interference of obstacles, with an accuracy rate as high as 96.6%. In the fall detection task within the real-time data stream, the average classification accuracy of the model reaches 93%, and it is profoundly compared with RF, PSO-RF and other diverse classical classification models, featuring high accuracy and short overall time, and possessing both accuracy and classification efficiency. The superiority and effectiveness of the proposed method are verified.

    参考文献
    相似文献
    引证文献
引用本文

杨桢,段雨昕,李鑫,吴方泽,纪力文,冯丰.基于2D-SPWVD与PCA-SSA-RF的超宽带雷达人体跌落动作辨识方法[J].电子测量与仪器学报,2024,38(10):147-158

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知