分层平滑优化A*引导DWA用于机器人路径规划
DOI:
CSTR:
作者:
作者单位:

安徽理工大学电气与信息工程学院淮南232001

作者简介:

通讯作者:

中图分类号:

TP24;TN964

基金项目:

国家自然科学基金(62003001)、安徽高校自然科学研究项目重大项目(2023AH040157)资助


Hierarchical smoothing optimization A*-guided DWA for robot path planning
Author:
Affiliation:

School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对A*算法存在的搜索效率低,路径平滑性和安全性差,以及DWA融合全局路径规划算法实时寻路效率低等问题,提出了一种分层平滑优化A*引导DWA(HSA*-G-DWA)的移动机器人路径规划方法。首先,在A*算法的代价函数中引入双动态加权因子并构建碰撞约束函数剔除路径搜索过程中无关扩展节点的搜索,以提升路径搜索的效率和安全性。其次,利用分层平滑优化策略消除路径中的冗余点和转折点,减少路径点数量和路径长度。之后,通过无障碍约束直线与有障碍约束圆弧插补分段优化生成初始全局路径,保证路径的安全性与平滑性。然后,若移动机器人跟踪全局路径过程中面临未知障碍物则利用全局路径引导DWA生成避障与返回全局路径的局部动态修正路径,减少了实时计算量。最后,仿真实验结果表明,静态环境下HSA*-G-DWA算法路径搜索时间和路径点数较A*算法分别平均减少了88.43%和86%,路径的平滑性和安全性更好;未知环境下HSA*-G-DWA算法可以实时避开环境中出现的未知障碍物,路径长度较DWA算法、Dijkstra算法、RRT算法和现有融合算法分别平均减少了25.78%、18.65%、30.48%和14.59%,路径搜索时间较现有融合算法平均减少了67.39%。

    Abstract:

    Aiming at the problems of low search efficiency, poor path smoothness and security of A* algorithm, and low real-time pathfinding efficiency of DWA integrated with global path planning algorithm, a hierarchical smooth optimization A* guided DWA (HSA*-G-DWA) path planning method for mobile robots is proposed. Firstly, the double dynamic weighting factor is introduced into the cost function of A* algorithm and the collision constraint is developed to avoid the search of unrelated extension nodes, so as to improve the efficiency and security of path search. Secondly, the hierarchical smoothing optimization strategy is designed to eliminate redundant nodes and turning nodes in the path, and reduce the number of path nodes and the path length. After that, the initial global path is generated by segmented interpolation of lines without any obstacle constraints and arcs with obstacle constraints to ensure the safety and smoothness of the path. Then, if the mobile robot encounters unknown obstacles in the process of tracking the global path, it uses the global path to guide DWA to generate the local dynamic correction path for obstacles avoidance and returning to the remaining global path, which reduces the amount of real-time calculation. Finally, the simulation results show that the path search time and path nodes of the proposed HSA*-G-DWA algorithm are reduced by 88.43% and 86%, respectively, and the smoothness and security of the path are better than the A* algorithm in the static environment; and the HSA*-G-DWA algorithm can avoid unknown obstacles in the unknown environment in real time. Compared with the DWA algorithm, Dijkstra algorithm, RRT algorithm and other fusion algorithms, the path length is reduced by 25.78%, 18.65%, 30.48% and 14.59% on average, and the path search time is reduced by 67.39% on average.

    参考文献
    相似文献
    引证文献
引用本文

朱洪波,殷宏亮.分层平滑优化A*引导DWA用于机器人路径规划[J].电子测量与仪器学报,2024,38(9):155-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知