Bézier函数协同改进松鼠搜索算法共同优化的光伏电池参数辨识
DOI:
CSTR:
作者:
作者单位:

黑龙江科技大学电气与控制工程学院哈尔滨150022

作者简介:

通讯作者:

中图分类号:

TN3; TM615

基金项目:

国家自然科学基金(51677057)项目资助


Photovoltaic cell parameter estimation through collaborative optimization of the Bézier function and the improved squirrel search algorithm
Author:
Affiliation:

Department of Electrical and Control Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决智能搜索算法对于太阳电池参数辨识的精度低,收敛慢和实验数据获取困难的问题,提出了一种采用二阶Bézier曲线和改进松鼠搜索算法的太阳电池参数辨识方法。首先,在经过最大功率点并且和开路电压点和短路电流点连线平行的直线上寻找最佳Bézier控制点,然后根据控制点位置和电池填充因子之间的拟合规律,实现无需实验即可对伏安特性曲线进行简单精准建模的目的,在准确描述HIT电池的输出特性的同时,有效降低测量噪声对参数辨识的影响;其次,通过引入Sobol序列,反向学习和混沌理论对标准松鼠算法进行改进,在初始化过程中加入类随机采样中的Sobol序列,并采取反向学习策略,增强种群的多样性和搜索空间覆盖率,并融合tent混沌映射对最优解进行扰动,增强算法跳出局部最优的能力。将改进后的松鼠优化算法用于异质结太阳电池参数辨识中,并与其他智能优化算法进行对比,结果显示改进算法的均方根误差分别为0.028 25、0.017 458、0.023 61,具有最高的精度,证明了该算法在异质结太阳电池参数辨识中的有效性和准确性,为太阳电池参数辨识提供了一种可靠且准确的新方法。

    Abstract:

    To address the issues of low accuracy, slow convergence, and difficult data acquisition in intelligent search algorithms for solar cell parameter estimation, we propose a method that combines second-order Bézier curves with an enhanced Squirrel Search Algorithm. First, the optimum Bézierr control point is found on the line that passes through the maximum power point and is parallel to the line of the open circuit voltage point and the short circuit current point. This approach leverages the relationship between control point positions and battery fill factor to achieve precise modeling of the I-V characteristic curve without the need for experiments. This method not only accurately describes the output characteristics of HIT cells but also effectively reduces the impact of measurement noise on parameter identification. Secondly, we introduce Sobol sequences, reverse learning, and chaos theory to improve the standard squirrel algorithm. Sobol sequences are integrated into the initialization process as quasi-random samples, and a reverse learning strategy enhances population diversity and search space coverage. Additionally, a tent chaotic mapping perturbs the optimal solution, enhancing the algorithm’s capability to escape local optima. The improved squirrel optimization algorithm is applied to heterogeneous junction solar cell parameter estimation and compared with other intelligent optimization algorithms. The results showed that the improved algorithm achieved root mean square errors of 0.028 25, 0.017 458, and 0.023 61, respectively, indicating the highest accuracy. This demonstrates the effectiveness and accuracy of the algorithm in the parameter identification of heterojunction solar cells, providing a reliable and precise new method for solar cell parameter identification.

    参考文献
    相似文献
    引证文献
引用本文

朱显辉,崔世炜,鲁双峰. Bézier函数协同改进松鼠搜索算法共同优化的光伏电池参数辨识[J].电子测量与仪器学报,2024,38(10):191-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知