融合邻域搜索的自适应鲸鱼优化算法
DOI:
CSTR:
作者:
作者单位:

重庆邮电大学通信与信息工程学院重庆400065

作者简介:

通讯作者:

中图分类号:

TP301.6;TN929.5

基金项目:

重庆市研究生科研创新项目 (CYS23453, CYS22473)、重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0249, CSTB2023NSCQ-MSX0832)、重庆市教委科学技术研究项目(KJQN202300615)资助


Adaptive whale optimization algorithm combining neighborhood search
Author:
Affiliation:

School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鲸鱼优化算法(WOA)是一种高效的群体智能优化算法。与其他智能优化算法相比,WOA由于结构简单,参数少以及强大的优化能力已经被广泛使用。然而,传统的WOA存在收敛速度慢,容易陷入局部最优的问题。为了解决这些问题,本研究提出了一种改进的鲸鱼优化算法(IWOA),该算法采用自适应更新机制,受粒子群算法的启发,在优化过程中引入个体历史最优位置,并通过自适应策略动态调整全局历史最优位置和个体历史最优位置的权重,避免算法陷入局部最优;同时通过邻域搜索策略,在迭代后期围绕全局历史最优位置进行邻域更新,提升算法寻优能力。选取16个典型的基准测试函数以及CEC2014测试集的8个复合函数进行仿真实验,与其他传统及改进的群体智能优化算法相比,IWOA的收敛精度和收敛速度更有优势,验证了IWOA的有效性;并将IWOA应用在焊接梁和压力容器设计2个工程设计问题上,相比于WOA,经济成本分别节约了3.94%、5.58%,验证了算法的有效性。

    Abstract:

    The whale optimization algorithm (WOA) is a highly competitive and efficient swarm intelligence optimization algorithm. In comparison to other intelligent optimization algorithms, WOA offers a simple structure, fewer parameters, and robust optimization capabilities. However, the conventional WOA exhibits slow convergence and falls into local optima easily. To address these issues, this paper proposes an improved whale optimization algorithm (IWOA). The algorithm adopts an adaptive update mechanism, inspired by particle swarm optimization, incorporating the individual’s historical best position during the optimization process, and dynamically adjusts the weights of the global best and individual best positions through an adaptive strategy to avoid getting trapped in local optima; at the same time, through neighborhood search strategy, neighborhood updates are carried out around the global historical optimal position in the later stage of iteration to improve the algorithm’s optimization ability. 16 typical benchmark test functions and 8 composite functions from the CEC2014 test set are selected for simulation experiments, compared to other traditional and improved swarm intelligence optimization algorithms, IWOA demonstrates superior convergence accuracy and speed, validating its effectiveness; and IWOA is applied to two engineering design problems, welding beam and pressure vessel design, compared with WOA, the economic cost is saved by 3.94% and 5.58%, respectively, verifying the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

谢良波,韩伸,张钰坤.融合邻域搜索的自适应鲸鱼优化算法[J].电子测量与仪器学报,2024,38(12):124-134

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码