基于DAMF-NET的输电线路施工机械智能检测
DOI:
CSTR:
作者:
作者单位:

1.西安工程大学电子信息学院;2.西安市电气设备互联感知与智能诊断重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省重点研发计划(2020ZDLGY09-10); 金属挤压与锻造装备技术国家重点实验室开放课题(S2208100.W03); 陕西省创新人才推进计划(2022KJXX-41); 西安市科技计划(22GXFW0041); 西安工程大学研究生创新基金项目(chx2024014).


Intelligent detection of transmission line construction machinery based on DAMF-NET
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电线路的稳定性是电网正常运行的重要保障,为防止线路施工误碰导线发生事故,针对现有检测方法精度低和可靠性差,提出了一种基于多分支双重注意力的特征提取网络DAMF-NET。该算法通过构建多分支双重注意力机制使网络更加关注目标信息的局部特征,优化模型特征提取过程;提出多分支轻量特征融合网络,用于强化模型的全局多尺度语义信息和密集任务下的特征显著性,提高图像特征完备性;提出小目标检测网络以缓解网络尺度方差,提高小目标检测敏感性;使用焦点损失函数和EIoU优化损失函数,减小正负样本不平衡产生的噪声,加快模型训练收敛速度;最后设计了一种基于风险区域定位的状态识别算法,将其部署至施工机械智能检测系统。实验表明,该方法平均精度优于当前大部分检测模型,在施工机械检测和智能巡检方面具有一定的研究意义。

    Abstract:

    The stability of transmission lines is a crucial guarantee for the normal operation of the power grid. To prevent accidents caused by accidental contact with conductors during line construction, this paper proposes a feature extraction network based on a multi-branch dual attention mechanism, DAMF-NET, addressing the low accuracy and poor reliability of existing detection methods. This algorithm enhances the network's focus on local features of target information by constructing a multi-branch dual attention mechanism, optimizing the feature extraction process. A multi-branch lightweight feature fusion network is proposed to reinforce the global multi-scale semantic information and feature significance under dense tasks, thereby improving the completeness of image features. A small object detection network is introduced to mitigate network scale variance and enhance the sensitivity of small object detection. By employing focal loss and EIoU optimized loss functions, the method reduces noise generated by positive and negative sample imbalance, accelerating the convergence speed of model training. Finally, a state recognition algorithm based on risk area localization is designed and deployed in the intelligent detection system of construction machinery. Experiments show that this method has better average precision compared to most current detection models, indicating its research significance in the detection of construction machinery and intelligent inspection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-29
  • 最后修改日期:2024-07-15
  • 录用日期:2024-07-17
  • 在线发布日期:
  • 出版日期:
文章二维码