金属齿轮内部缺陷超声检测信号去噪方法
DOI:
CSTR:
作者:
作者单位:

1.武汉工程大学电气信息学院武汉430205;2.中国航空工业集团公司北京长城计量测试技术研究所北京100095

作者简介:

通讯作者:

中图分类号:

TB52;TN91

基金项目:

武汉工程大学研究生教育创新基金(CX2023574)项目资助


Ultrasonic detection signal denoising method for internal defects of metal gear
Author:
Affiliation:

1.School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China; 2.Changcheng Institute of Metrology & Measurement, Aviation Industry Corporation of China, Beijing 100095, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对金属齿轮内部缺陷检测信号易受噪声干扰导致缺陷特征提取不准确问题,提出一种基于动态局部熵与自适应分解的齿轮缺陷超声检测信号去噪方法。采用经验模态分解对齿轮缺陷超声检测信号进行自适应分解,结合相关系数模态聚类指标得到预处理信号;基于检测信号动态局部熵理论确定缺陷回波区间,得到缺陷回波信号;采用经验小波变换实现缺陷回波信号去噪,结合二次多项式平滑滤波算法提升去噪信号平滑度,得到金属齿轮缺陷超声检测信号的最终去噪结果。仿真超声检测信号去噪实验结果显示,对于不同信噪比条件下的仿真信号,本文方法去噪信号平均信噪比值和均方误差分别为21.34 dB和0.000 2 V,去噪效果明显优于经验模态分解和小波变换,两种方法的平均信噪比和均方误差分别为10.43 dB、12.56 dB和0.001 9 V、0.001 4 V,且在不同信噪比条件下的本文方法均具有更优的去噪效果和更强的鲁棒性。金属齿轮内部缺陷实测实验结果表明,本文方法能够去除齿轮缺陷超声检测信号中的复杂噪声干扰,有效提高了金属齿轮内部缺陷超声检测信号质量。

    Abstract:

    Aiming at the problem that the internal defect detection signal of gear is easily disturbed by noise and it is difficult to extract the defect feature information, an ultrasonic detection signal of gear defects denoising method based on dynamic local entropy and adaptive decomposition is proposed. The empirical mode decomposition is used to decompose the ultrasonic detection signal of gear defects adaptively, and the preprocessed signal is obtained. The local entropy distribution of preprocessed signal is calculated by dynamic local entropy theory, the defect echo interval is determined with the local entropy threshold, and the defect echo signal is then obtained. The defect echo signal is denoised based on the empirical wavelet transform, and the signal smoothness is improved through the quadratic polynomial least square algorithm. The final denoised result of the ultrasonic detection signal of gear defects is obtained. Simulations and actual measurement experiments are carried out to verify the denoising performance of the proposed method. The simulation experiment results show that for simulation signals under different SNR conditions, the mean SNR of the proposed method after denoising is 21.34 dB, and the mean square error MSE is 0.000 2 V. The denoising effect of the proposed method is significantly better than EMD and Wavelet Transform. The mean SNR and mean square error of the two methods are 10.43 dB, 12.56 dB and 0.001 9 V and 0.001 4 V respectively. In addition, the proposed method has better denoising effect and stronger robustness under different SNR conditions. The experimental results show that the proposed method can remove the complex noise interference in the ultrasonic detection signal of metal gear defects, and effectively improve the quality of the ultrasonic detection signal of metal gear defects.

    参考文献
    相似文献
    引证文献
引用本文

杨梦冉,姚贞建,王辰辰,吕丽.金属齿轮内部缺陷超声检测信号去噪方法[J].电子测量与仪器学报,2024,38(9):234-243

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知