基于PCA特征优选和AdaBoost集成学习的齿轮箱油品状态识别方法
DOI:
CSTR:
作者:
作者单位:

1.湖南科技大学信息与电气工程学院湘潭411100;2.机械设备健康维护湖南省重点实验室湘潭411100; 3.湖南科技大学机电工程学院湘潭411100

作者简介:

通讯作者:

中图分类号:

TP274.2;TN06

基金项目:

省自然科学基金(2023JJ40286)项目资助


Gearbox oil status recognition method based on PCA feature optimization and adaboost ensemble learning
Author:
Affiliation:

1.School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411100, China; 2.Hunan Provincial Key Laboratory of Mechanical Equipment Health Maintenance, Xiangtan 411100, China; 3.School of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统齿轮箱油液分析方法存在的精度低和泛化能力有限的问题,提出一种基于PCA特征优选和AdaBoost集成学习的齿轮箱油品状态识别方法。首先,通过箱型图和smote插值对油液多参量数据进行清洗以提高油液数据的质量;其次,采用PCA进行油品特征优选,获取有助于识别的油品特征优选子集,在有效融合油液多参量信息的同时,可显著降低模型运行的时间复杂度;然后,利用BP神经网络建立油品状态识别基本模型,引入GWO灰狼优化算法对模型进行优化,构建具有最优初始权值与阈值的弱分类器GWO-BP,同时采取自适应提升AdaBoost算法组合多个弱分类器GWO-BP,集成为较强鲁棒性的强分类器。最后利用实验进行验证和分析,实验结果表明,所提方法效果最优,平均识别率99.30±0.16%,平均用时32.77±1.27 s,能够快速高效、准确识别出齿轮箱润滑油油品状态,为实现在线齿轮箱的油品状态识别奠定了良好基础,具有重要的工程应用价值。

    Abstract:

    A gearbox oil state recognition method based on PCA feature optimization and AdaBoost ensemble learning is proposed to address the problems of low accuracy and limited generalization ability in traditional gearbox oil analysis methods. Firstly, the multi parameter oil data is cleaned using box plots and SMOTE interpolation to improve the quality of the oil data; Secondly, PCA is used for oil product feature optimization to obtain a subset of oil product feature optimization that is helpful for identification. While effectively integrating multi parameter information of oil, it can significantly reduce the time complexity of model operation; Then, a basic model for oil state recognition is established using BP neural network, and the GWO wolf pack optimization algorithm is introduced to optimize the model. A weak classifier GWO-BP with optimal initial weights and thresholds is constructed, and an adaptive boosting AdaBoost algorithm is adopted to combine multiple weak classifiers GWO-BP, integrating them into a strong classifier with strong robustness. Finally, the experimental data was applied for verification and analysis. The experimental results showed that the proposed method had the best performance, with an average recognition rate of 99.30 ± 0.16% and an average time of 32.77 ± 1.27 seconds. It could quickly, efficiently, and accurately identify the oil state of the gearbox lubricating oil, laying a good foundation for realizing online oil state recognition of gearboxes and having important engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

陈晓犇,黄采伦,赵延明,李智靖,南茂元,田勇军.基于PCA特征优选和AdaBoost集成学习的齿轮箱油品状态识别方法[J].电子测量与仪器学报,2024,38(10):58-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知