多通道权重融合和小波分解的癫痫棘波检测方法
DOI:
CSTR:
作者:
作者单位:

1.北京航空航天大学仪器科学与光电工程学院北京100191; 2.杭州极弱磁场国家重大科技基础设施研究院杭州310051

作者简介:

通讯作者:

中图分类号:

TN911.72

基金项目:

2022产业技术基础公共服务平台项目(2022-189-181)、中国科学院学部前沿交叉研判研究(XK2023XXC002)资助项目


Multichannel weight fusion and wavelet decomposition method for detecting epileptic spines
Author:
Affiliation:

1.School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; 2.Hangzhou Institude of Extremelyweak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou 310051,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑电的棘波自动化检测是目前研究的重点,对癫痫诊断具有重要意义。现有检测方法主要有两类:信号分析和机器学习。前者对异常值敏感,后者算法对不同数据的鲁棒性未能得到充分验证。另外,传统的基于单通道脑电的棘波检测方法容易受到伪迹干扰。针对现有算法存在的问题并结合棘波的电生理特点,提出了基于多通道数据权重融合和小波分解的棘波检测算法。首先,根据癫痫棘波的放电特性,设计一种以幅值和波形趋势为特征值的多通道权重融合方法,获得棘波数据强化后的单通道数据;其次,算法引入小波分解,有效地提取信号中的局部特征,增强检测癫痫棘波这类具有突变特性信号的能力;最后,通过临床采集的癫痫患者脑电数据,验证了该算法能实现癫痫发作间期棘波的精确检测,诊断准确率可达92.3%以上。相较于传统的单通道脑电棘波检测方法,该方法具有检测准确率高、计算简单的优势,是一种有效的癫痫发作间期的棘波检测技术。

    Abstract:

    The automated detection of spikes in electroencephalogram is currently a prominent area of research, with significant implications for epilepsy diagnosis. There are primarily two types of existing detection methods: signal analysis and machine learning. The former is sensitive to outliers, while the robustness of the latter’s algorithms to different data has not been fully verified. Additionally, traditional spike detection methods based on single-channel EEG are susceptible to artifact interference. In response to the limitations of existing algorithms and considering the electrophysiological characteristics of spikes, we propose a spike detection algorithm based on multi-channel data weight fusion and wavelet decomposition. Firstly, a multi-channel weight fusion method is designed using amplitude and waveform trends as feature values to enhance single-channel data according to the discharge characteristics of epileptic spikes. Secondly, the algorithm introduces wavelet decomposition to effectively extract local features from the signal and enhance its ability to detect signals with mutation characteristics. Finally, clinical EEG data collected from epileptic patients verify that the algorithm can achieve accurate detection of interictal spikes at a diagnostic accuracy rate exceeding 92.3%. Compared with traditional single-channel EEG spike detection methods, this approach offers advantages such as high accuracy and simple calculation, making it an effective technology for interictal spike detection in epilepsy.

    参考文献
    相似文献
    引证文献
引用本文

俞小彤,赵若辰,宁晓琳.多通道权重融合和小波分解的癫痫棘波检测方法[J].电子测量与仪器学报,2024,38(10):24-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知