改进RetinaNet的舌面齿痕和裂纹检测模型
DOI:
CSTR:
作者:
作者单位:

中北大学仪器科学与动态测试教育部重点实验室太原030051

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.73

基金项目:

山西省重点研发计划(202102130501011)、国家自然科学基金(62204231)项目资助


Improved tongue tooth mark and fissure detection model of RetinaNet
Author:
Affiliation:

Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministy of Education, North University of China, Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    中医舌诊通过观察舌特征能够进行脏腑虚实和功能盛衰的判断,具有无创便捷等优势。伴随着计算机视觉技术的飞速发展与广泛应用,开发一种能够进行自动检测、提取和识别舌象特征的模型至关重要。面向中医临床及健康监测对舌诊数字化的需求,提出了一种基于改进RetinaNet的舌面齿痕和裂纹特征自动检测模型。该模型首先在RetinaNet基准模型的骨干网络中引入SimPSA-ResNet模块和SimSPPF模块,用以增强网络的特征提取能力和模型的鲁棒性;同时,改进多级特征金字塔网络结构,提高模型的特征融合能力,进一步聚焦舌面特征的关键信息;最后,去除冗余输出特征层,并结合ASFF结构,保留重要的特征信息,提高信息利用率。将改进后的RetinaNet模型在自制的舌象数据集中进行训练和预测,得到的平均检测精度(mAP)为94.37%,相较原算法提升了2.77%。实验结果表明改进RetinaNet模型能够有效提高舌面齿痕和裂纹特征的检测精度,有助于用户的日常自检、健康管理以及辅助医生进行诊断。

    Abstract:

    Tongue diagnosis in traditional Chinese medicine (TCM) judges the deficiency and strength of internal organs as well as the vitality of functions by observing tongue features. It has the advantages of being non-invasive and convenient. Accompanied by the rapid development and wide application of computer vision technology, it is crucial to develop a model that can perform automatic detection, extraction and recognition of tongue features. Toward demands for digital tongue diagnosis in traditional Chinese medicine clinic and health monitoring, an automatic detection model for tongue tooth mark and fissure features was proposed based on improved RetinaNet. The SimPSA-ResNet and SimSPPF module were introduced into the backbone of RetinaNet to enhance the feature extraction capability and robustness of the network. Meanwhile, the multi-level feature pyramid network structure was improved to ensure that the model can better integrate information from different scales, thereby focusing more accurately on the key information pertinent to tongue features. Finally, to further streamline the model’s output, redundant output feature layers were eliminated and integrated with the Attention-guided Spatial Feature Fusion structure. This step helps retain important features while improving the utilization of information within the network. The improved RetinaNet model was trained and predicted by using the self-built tongue image dataset, and the mean average precision(mAP) reaches 94.37%, which is 2.77% higher than that of the original algorithm. Experimental results conclusively demonstrate that the improved RetinaNet model can effectively elevate the detection accuracy of tongue tooth mark and fissure features. This advancement holds tremendous potential for facilitating daily self-examination, health management and assisting doctors in diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

曹溪源,张德龙,朱枭龙,张志东,薛晨阳.改进RetinaNet的舌面齿痕和裂纹检测模型[J].电子测量与仪器学报,2024,38(12):72-80

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码