一种基于相位与残差信息的运动想象分类方法研究
DOI:
CSTR:
作者:
作者单位:

1.海军工程大学兵器工程学院武汉430030;2.吉林工程技术师范学院数据科学与人工智能学院长春130000

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

湖北省自然科学基金(2024AFB404)项目资助


Research on a motion imagery classification method based on phase and residual information
Author:
Affiliation:

1.School of Weaponry Engineering, Naval University of Engineering, Wuhan 430030, China; 2.School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运动想象是脑机接口领域中一类经典研究范式,该任务旨在研究仅通过大脑想象来完成对外部电子设备的信息传递与控制。共空间模式算法是运动想象研究中不可或缺的经典特征提取算法,该算法可以通过最大化类间方差来获得区分度较高的特征,从而获得分类性能良好的模型。然而,共空间模式算法对于噪声等干扰较为敏感,并且要求尽可能多的类间信息,导致其在非侵入式脑成像研究中运用效果不佳。针对该问题,提出了一种基于频域相位信息与时域趋势信息的数据处理算法,利用脑电信号的瞬时相位序列与经验模态分解残差分量构建了相位-残差序列,在保留大脑神经活动信息最大化的同时摒弃外界或其他噪声所带来的干扰,并通过共空间模式算法提取区分性更强的特征,最终获得识别和泛化性能更优的分类模型。实验结果表明,所提方法在52名受试者之间的平均分类准确率为88.19%,高于原始序列的79.67%,同时在不同受试者的运动想象数据中表现出了更为平稳的分类性能,证明了该方法在基于脑电信号的运动想象分类中具有良好的识别与泛化能力。

    Abstract:

    Motor imagery is a classic research paradigm in the field of brain computer interfaces, which aims to study the information transmission and control of external electronic devices solely through brain imagination. The Common spatial paternal algorithm is an indispensable classic feature extraction algorithm in motor imagery research. This algorithm can obtain highly discriminative features by maximizing inter class variance, thereby obtaining models with good classification performance. However, the common spatial paternal algorithm is sensitive to noise and other interferences, and requires as much inter class information as possible, resulting in poor performance in non-invasive brain imaging research. To address this problem, a data processing algorithm based on phase information in frequency domain and trend information in time domain is proposed. The phase residual sequence is constructed using the instantaneous phase sequence and the empirical mode decomposition residual component of electroencephalogram signals. The algorithm maximizes brain neural activity information while eliminating interference from external or other noise, and extracts more discriminative features through common spatial paternal algorithm, ultimately obtaining a classification model with strong recognition and generalization performance. The experimental results show that the proposed method has an average classification accuracy of 88.19% among 52 subjects, which is higher than the original sequence’s 79.67%. At the same time, it exhibits more stable classification performance in motor imagery data of different subjects, proving that the method has good recognition and generalization ability in electroencephalogram-based motor imagery classification.

    参考文献
    相似文献
    引证文献
引用本文

张家琦,漆石钰.一种基于相位与残差信息的运动想象分类方法研究[J].电子测量与仪器学报,2024,38(12):155-162

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码