改进U_Net网络的钢结构表面锈蚀图像分割方法
DOI:
CSTR:
作者:
作者单位:

1.三峡大学水电机械设计与维护湖北省重点实验室宜昌443002;2.国家大坝安全工程技术研究中心武汉430010

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.73

基金项目:

国家自然科学基金( 51975324)、国家大坝安全工程技术研究中心开放基金(CX2022B06)、湖北省教育厅科研项目( B2021036)资助


Improved steel structure surface rust image segmentation method for U_Net network
Author:
Affiliation:

1.Hubei Key Laboratory of Hydropower Machinery Design & Maintenance, China Three Gorges University, Yichang 443002,China;2.National Dam Safety Research Center, Wuhan 430010, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现锈蚀图像分割网络模型轻量化,同时消除非单一特征背景和锈液等类似特征背景干扰,本文将U_Net网络模型的编码部分替换为MobilenetV3_Large网络,导入基于ImageNet数据集的MobilenetV3_Large网络预训练权重,将U_Net网络模型解码部分的普通卷积替换为深度可分离残差卷积,并在上采样的过程中添加注意力导向AG模块和Dropout机制。经实验验证表明,本文设计的改进U_Net网络模型在非单一特征背景和锈液等类似特征背景干扰下,具有明显的锈蚀图像分割优势,相比于原U_Net网络模型,模型大小减少了81.18%,浮点计算量减少了98.34%,检测效率提升了3.27倍,即从原来不足6 fps,提升至19 fps。网络模型实现轻量化的同时,网络模型的准确率达95.54%,相比于原U_Net网络模型提升了5.04%。

    Abstract:

    In order to lighten the rust image segmentation network model and eliminate the interference of nonsingle feature background and similar feature backgrounds such as rust liquid, this paper replaces the encoded part of the U-Net network model with the MobilenetV3_large network, imports the pre-trained weights of the MobilenetV3_large network based on the ImageNet dataset, and replaces the ordinary convolution of the decoded part of the U-Net network model with a deep separable residual convolution. And add the attention-oriented AG module and the Dropout mechanism in the process of upsampling. Experimental results demonstrate that the improved U-Net network model designed in this paper exhibits significant advantages in rust image segmentation under non-uniform feature background and similar feature background interference such as rust liquids. The model size is reduced by 81.18% compared to the original U-Net network model, resulting in a decrease of floating point calculations by 98.34%. Additionally, the detection efficiency has improved by 3.27 times, increasing from less than 6 frames/s to 19 frames/s. While the network model is lightweight, the accuracy of the network model is 95.54%, which is 5.04% higher than the original U_Net network model.

    参考文献
    相似文献
    引证文献
引用本文

陈法法,董海飞,何向阳,陈保家.改进U_Net网络的钢结构表面锈蚀图像分割方法[J].电子测量与仪器学报,2024,38(2):49-57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-29
  • 出版日期:
文章二维码