测量噪声方差未知的多传感器组合导航集中融合算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN966; V249. 3

基金项目:

国家自然科学基金(62076249)、山东省自然科学基金(ZR2020MF154)项目资助


Centralized fusion algorithm of multi-sensor integrated navigation for unknown measurement noise variance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前,多传感器组合导航系统的信息融合方法是建立在测量噪声方差已知的基础上,然而测量噪声方差会随着内部及 外部的干扰而发生变化。 为此,本文首先将基于变分贝叶斯逼近的自适应卡尔曼滤波( variational Bayesian approximation based adaptive Kalman filter,VB-AKF)从单一组合导航系统扩展到多传感器组合导航系统;然后,提出了多传感器组合导航系统的两 种集中融合算法,即基于 VB-AKF 的增广式集中融合算法及基于 VB-AKF 的序贯式集中融合算法,以解决测量噪声方差未知情 况下的多传感器组合导航的信息融合问题;最后,通过 SINS / GNSS / CNS / ADS 多传感器组合导航系统对上述算法进行了仿真验 证。 实验结果表明,本文所提两种算法滤波精度相同、且接近于测量噪声方差已知情况下的理想集中融合算法( ICKF)。 在整 个仿真时段内,相对于传统集中式卡尔曼滤波器(TCKF)及具有容错功能的联邦卡尔曼滤波算法(FT-FKF),本文算法可提高位 置精度分别为 32%和 90%、提高速度精度分别为 38%和 71%。

    Abstract:

    At present, the information fusion method of multi-sensor integrated navigation system is based on the known variance of measurement noise, but the variance of measurement noise will change with internal and external interference. Therefore, this paper firstly extends the variational Bayesian approximation based adaptive Kalman filter (VB-AKF) from a single integrated navigation system to a multi-sensor integrated navigation system. Then, two kinds of centralized fusion algorithms of multi-sensor integrated navigation system are proposed, namely, the VB-AKF based augmented centralized fusion algorithm and the VB-AKF based sequential centralized fusion algorithm, to solve the problem of information fusion of multi-sensor integrated navigation with unknown measurement noise variance. Finally, the SINS / GNSS / CNS / ADS multi-sensor integrated navigation system is used to validate the above algorithm. The experimental results show that the two algorithms proposed in this paper have the same filtering accuracy and are close to the ideal centralized Kalman fusion algorithm ( ICKF) when the variance of measurement noise is known. In the whole simulation period, compared with traditional centralized Karl filter (TCKF) and federal Kalman filter (FT-FKF) with fault tolerance function, the proposed algorithm can improve position accuracy by 32% and 90%, and speed accuracy by 38% and 71%, respectively

    参考文献
    相似文献
    引证文献
引用本文

荆 蕾,孙炜玮,潘新龙,乔玉新,韩真真.测量噪声方差未知的多传感器组合导航集中融合算法[J].电子测量与仪器学报,2023,37(10):164-171

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-21
  • 出版日期:
文章二维码