基于几何统计的人体姿态语义描述方法
DOI:
CSTR:
作者:
作者单位:

扬州大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Human Posture Semantic Description Method Based on Geometric Statistics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确高效地对人体姿态进行语义描述是实现人类行为识别的重要部分,也是理解人类行为的关键步骤。近年来,人体关键点检测技术获得了长足的发展,然而绝大多数关键点检测方法并未实现人体姿态的语义判断。为此,提出了一种基于几何统计的人体姿态语义描述方法。该方法采用了集合的思想来提高姿态识别的效率,具有较强的鲁棒性。首先将获得的人体关键点划分为若干集合,然后计算每个关键点集合的几何分布特征来描述人体姿态。最后在多个真实场景的数据集上进行测试,实验结果表明,在PASCAL数据集上所提方法识别人体姿态的平均准确率达到了77.1%,均优于其他方法,在遮挡以及关键点缺失等困难情况下依然能够实现较高精度的人体姿态判断。

    Abstract:

    Accurate and efficient semantic description of human posture is an important part of human behavior recognition and a key step in understanding human behavior. In recent years, human key point detection technology has made significant progress, but most key point detection methods do not achieve semantic judgment of human posture. Therefore, a semantic description method of human posture based on geometric statistics is proposed. This method adopts the idea of set to improve the efficiency of attitude recognition and has strong robustness. Firstly, the obtained human key points are divided into several sets, and then the geometric distribution characteristics of each key point set are calculated to describe the human posture. Finally, tests were conducted on multiple real scene datasets. The experimental results show that the average accuracy rate of the proposed method for recognizing human posture on the PASCAL dataset reaches 77.1%, which is superior to other methods. In difficult situations such as occlusion and missing key points, it can still achieve high accuracy in human posture judgment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-31
  • 最后修改日期:2023-06-08
  • 录用日期:2023-06-08
  • 在线发布日期:
  • 出版日期:
文章二维码