高斯过程改进的鲁棒容积卡尔曼滤波及其组合导航应用
DOI:
CSTR:
作者:
作者单位:

江苏大学农业工程学院

作者简介:

通讯作者:

中图分类号:

TP391.8??

基金项目:

中国博士后科学基金,国家自然科学基金项目(面上项目,重点项目,重大项目),江苏省自然科学基金


Gaussian process enhanced robust cubature Kalman filter and application in integrated navigation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于GNSS/INS的导航状态估计受状态可观测度影响较大,为提高陆地载体航向角的估计精度,提出了一种改进鲁棒容积卡尔曼滤波方法?首先采用免重采样采样点更新框架实现容积点更新与高斯矩信息的解耦,提高采样点实例化信息在迭代滤波中的传播效率?其次基于状态可观测度分析,将高斯过程引入到系统模型矩估计积分不确定性的标定中,改善移动载体直线行驶条件下航向的估计精度?仿真实验表明,所提GP-RCKF算法能在状态可观测度较弱时显著改善航向角估计精度,航向角误差较RCKF改善28.9%?

    Abstract:

    The observable degree of navigation state has a significant effect on the state estimation of GNSS/INS. In order to improve the accuracy of heading of land vehicle, an improved robust cubature Kalman filter (RCKF) method is proposed. First, the resampling-free sigma-point update framework is employed to separate the cubature point update from the Gaussian information limitation, and thus improving the propagation efficiency of the information contained in instantiated points in the iteratively filtering period. Secondly, in order to improve the heading of land vehicle when it travels along a straight-line, the Gaussian process (GP) is introduced into the uncertainty calibration of moment approximation of system model based on state observability analysis. Simulation results indicate that GP-RCKF improves the heading angle obviously when the state observability is weak, and compared with RCKF the heading is improved by 28.9%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-12
  • 最后修改日期:2021-09-08
  • 录用日期:2021-09-11
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知