改进型多项式匹配图像去噪算法的研究与应用
DOI:
CSTR:
作者:
作者单位:

1.南华大学附属第二医院计算机中心;2.南华大学教务部

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省教育厅优秀青年项目“基于外观模型融合的遮挡多目标跟踪技术研究”(15B207)


Application and research of improving polynomial fitting algorithms for images de-noising
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为进一步改善常规多项式匹配算法的去噪能力,针对常规多项式匹配算法不足和图像特征及噪声问题,提出一种基于边缘保护的改进多项式匹配滤波的算法。该方法在常规多项式匹配算法基础上,改进滤波窗口的选择方式,沿着图像纹理走向方向提取自适应滑动滤波窗口,选择具有最小匹配误差的窗口进行匹配滤波并作为最终输出结果。然后分别在灰度图像和CT图像上添加高斯白噪和椒盐噪声进行测试,经数据验证表明,该方法在有效压制噪声的前提下能够保持边缘/纹理信息,峰值信噪比平均提升80%以上,均方根误差减少80%以上。结论认为,和常规多项式滤波方法、中值滤波方法、双边滤波方法以及边缘保持滤波方法相比,改进方法能够有效提升图像视觉效果,满足图像应用要求,具有良好的应用前景。

    Abstract:

    In order to further improve the de-noising ability of the conventional polynomial matching algorithm, an improved polynomial matching filtering algorithm based on edge protection is proposed for the deficiency of the conventional polynomial matching algorithm and the image characteristics and noise problems. Based on the conventional polynomial matching algorithm, this method improves the selection method of the filter window, extracts the adaptive sliding filter window along the direction of the image texture, and selects the window with the smallest matching error for matched filtering and uses it as the final output result. Then add Gaussian white noise and pepper and salt noise to the gray image and CT image respectively for testing. The data verification shows that the method can maintain edge / texture information under the premise of effectively suppressing noise, and the peak signal-to-noise ratio is increased by more than 80% on average, mean square The root error is reduced by more than 80%. It is concluded that compared with the conventional polynomial filtering method, median filtering method, bilateral filtering method and edge preserving filtering method, the improved method can effectively improve the image visual effect, meet the image application requirements, and has good application prospects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-24
  • 最后修改日期:2020-10-20
  • 录用日期:2020-10-21
  • 在线发布日期:
  • 出版日期:
文章二维码