基于CWD及分块SVD的配电开关故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.国网福建省电力有限公司 福州;2.国网福建省电力有限公司电力科学研究院 福州;3.福州大学电气工程与自动化学院 福州

作者简介:

通讯作者:

中图分类号:

TM77

基金项目:

国家自然科学基金(51677030)资助;国网福建省电力有限公司科技项目(基于大数据技术的配电网运行状态特征提取及画像分析技术研究)资助。


Fault Diagnosis Method of Power Distribution Switch Via CWD and Block SVD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通常,配电开关分合闸操作产生的振动信号中蕴含有体现机械状态的重要信息。本文提出一种基于振动信号分析的新型配电开关故障诊断方法。首先对振动信号求取乔-威廉斯分布获得二维时频矩阵,然后对时频矩阵作分块奇异值分解,用于表征不同机械状态的时频特性,最后结合极限学习机算法对4类实测振动信号的特征向量进行训练和测试。所提方法的优点是有效提取了配电开关振动信号时频域的特征,并且可以在较少样本的情况下训练诊断模型。基于实测数据的实验表明,该方法具有较高的识别精度和较快的收敛速度。

    Abstract:

    In general, vibration signals generated by the switching operation of a power distribution switch contains important information to reflect its mechanical status. A novel type of fault diagnosis method for a power distribution switch based on vibration signals analyses is proposed in this study. Firstly, the Choi-Williams distribution (CWD) for the vibration signal is calculated to obtain a two-dimensional time-frequency matrix. Then, the block singular value decomposition (BSVD) is performed on the two-dimensional time-frequency matrix, which is used to characterize the time-frequency characteristics of different mechanical states. Finally, the extreme learning machine (ELM) classification algorithm is used to train and test the feature vectors of four mechanical states of measured vibration signals. The advantages of the proposed method are that the time domain and frequency domain characteristics of vibration signals inside the power distribution switch are effectively extracted, and the diagnostic model can be trained without many samples. Experiments based on measured data show that the proposed method has a higher recognition accuracy with a faster convergent speed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-17
  • 最后修改日期:2020-04-20
  • 录用日期:2020-04-22
  • 在线发布日期:
  • 出版日期:
文章二维码