基于KELM-SAPSO的开关磁阻电机优化设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM352

基金项目:


Optimization design of switched reluctance motor based on kernel extreme learning machine and simulated annealing particle swarm optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    开关磁阻电机由于其双凸极结构和铁芯磁通密度的高度饱和性,使得建立准确的非线性模型极其困难,传统的设计方法难以设计出最优方案。为了优化在起动过程中开关磁阻起动/发电机的转矩特性,缩短起动时间,首先采用传统设计方法设计了一台开关磁阻电机,并且选取了设计参数;然后针对非参数建模结构简单,容易辨识的特点利用核极限学习机进行非参数建模;最后使用模拟退火粒子群算法对平均转矩和转矩脉动进行多目标寻优。仿真结果表明,建立的非参数模型拟合精度高,优化后电机的平均转矩增加了395 N·m,转矩脉动减少023。仿真实验表明,核极限学习机和模拟退火粒子群相结合的算法适合于电机的设计与优化过程,具有参数设置少、泛化能力强、不易陷入局部最优解、耗时较少等优点。

    Abstract:

    It is difficult to establish an accurate nonlinear model for switched reluctance motor with double salient structure and high saturated magnetic field, and traditional design methods are difficult to obtain optimal scheme. In order to optimize the torque characteristics of switched reluctance motor (SRM) and shorten the starting time of the engine, firstly, a SRM is designed with traditional methods and the design parameters are selected. Then, the kernel extreme learning machine (KELM) is used to establish a nonparametric model of the SRM. Finally, simulated annealing particle swarm optimization (SAPSO) is used to optimize the structural parameters of the motor for higher average torque and lower torque ripple. Simulation results show that the model has the advantage of a higher precision and a faster speed of regression. The average torque is increased by 395 N·m, and the torque ripple is decreased by 023. The conclusion is that the combination of the KELM and the SAPSO is suitable for the design and optimization of the motor, and it has fewer regulation parameters, strong generalization, avoidance of local optimal solution and less timeconsuming.

    参考文献
    相似文献
    引证文献
引用本文

刘勇智,李杰,鄯成龙,林博闻.基于KELM-SAPSO的开关磁阻电机优化设计[J].电子测量与仪器学报,2019,33(2):148-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码