基于时空信息的运动目标识别算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN91;TP37

基金项目:

十三五”共用信息系统装备预研项目(31511040401)、“十三五”装备预研领域基金(61400040201)资助项目


Moving objects detecting algorithm based on spatialtemporal attributes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实场景中人们感兴趣的目标或事件往往与场景中正在移动的物体有关,使得运动目标检测往往成为许多应用中进行信息提取的关键步骤和富有挑战的问题。首先利用单应性变换作为背景运动模型,利用上一帧得到的前景掩码图限制背景运动的估算区域,提取更纯净的背景运动;其次使用具有可变学习速率的双模单高斯模型,获得不被污染的背景模型,融合运动目标的时空信息,生成前景概率图并预测下一帧的检测区域;后依据前景概率图构造自适应的前景自适应判决阈值,进行运动目标检测,并利用核密度估计进一步优化检测结果。实验结果表明,算法可以适用光照变化、复杂运动等场景,具有较低的计算复杂度,查准率、召回率和F值等指标平均提升052%、3337%、2014%。

    Abstract:

    The interested objects or events is often related to moving objects in the scene, so moving object detection become a key step and challenging problem. This paper studies the detection of moving objects with a moving camera, and the homography transform is used as the background motion model. Only the background motion is involved in the estimation of the model without the interference of the foreground motion during the estimation of the model parameters. A dualmode singleGaussian model is adopted to prevent the background model from being contaminated by foreground pixels and the background model is transferred in continuous frames using the motionfusion based compensation method. A foreground probability map is also erected according to the temporal and spatial attributes of the foreground object and is intended for an implementation of the adaptive decision threshold constructed to the selected pixels. Compared with other algorithms on a unified video sequence, the experimental results show that the proposed algorithm has a good performance on detection of which is proved to be a realtime approach, and the precision, the recall and the Fmeasure value increased by 052%, 3337% and 2014% respectively.

    参考文献
    相似文献
    引证文献
引用本文

孟庆鑫,孟庆磊,闫帅.基于时空信息的运动目标识别算法[J].电子测量与仪器学报,2019,33(2):154-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码