非线性时间序列粒子群优化B样条网络预测模型
CSTR:
作者:
作者单位:

湖南工业大学 电气与信息工程学院株洲412007

作者简介:

通讯作者:

中图分类号:

TP274; TN911.72

基金项目:

国家自然科学基金(61203136)、湖南省自然科学基金(2015JJ5025)资助项目


Nonlinear time series prediction model based on particle swarm optimization B-spline network
Author:
Affiliation:

School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高非线性时间序列的预测精度,建立一种粒子群优化B样条网络预测模型。在设计网络结构时,设置样条基函数节点作为独立变量,然后使其与权值参数在网络训练过程中一同优化,并且使用预测误差平方和评价训练效果。采用粒子群算法与适当的搜索策略作为训练算法,对B样条基函数最优节点的分布进行搜索,同时寻优权值参数,使网络结构得到优化,进而对非线性时间序列进行预测。仿真结果表明,粒子群优化B样条网络预测模型具有良好的泛化性能,同时所用算法对网络进行了有效的优化,所建预测模型结构简单且预测精度较高。

    Abstract:

    In order to improve the prediction accuracy of nonlinear time series, a prediction model based on particle swarm optimization Bspline network is proposed. In designing the structure of the network, the nodes of Bspline basis functions which are considered to be independent variables and every correlative weight parameter are to be optimized together in the network training process. And the forecasting error square sum is adopted to evaluate the training effect of the network. A particle swarm optimization algorithm with an appropriate search strategy is used as the training algorithm to search the distribution of optimal nodes of Bspline basis functions and find the optimal weight parameters, so that the structure of the network is optimized. Then, the nonlinear time series is predicted by the network. The simulation results indicate that the prediction model based on particle swarm optimization Bspline network has a fine generalization performance, and the algorithm optimizes the network effectively. The proposed prediction model is not only simple in structure, but also has higher prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

龚小龙,孔玲爽,袁川来,肖会芹.非线性时间序列粒子群优化B样条网络预测模型[J].电子测量与仪器学报,2017,31(12):1890-1895

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-24
  • 出版日期:
文章二维码