风电场机组远程监测系统
CSTR:
作者:
作者单位:

北京信息科技大学现代测控技术教育部重点实验室北京100192

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家自然基金(51275052)、国家高技术发展研究计划(2015AA043702)资助项目


Remote monitoring system for wind turbine
Author:
Affiliation:

Key Laboratory of Modern Measurement & Control Technology of Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大型机电设备日趋得到广泛应用。这些大型机电设备不仅自身造价昂贵,其维修成本也是相当惊人。设备损坏、精度劣化以及效率降低都可能造成巨大的损失,为有效保证设备的正常工作、加工质量和故障的预报,开展构建远程在线检测及智能故障诊断预测系统平台研究。远程监测系统集成传感器技术、动态测控技术、信号处理技术、故障模式识别技术和人工智能技术,风机现场的应用表明,该系统可有效监测风机的运行状况,实现对风机故障部位的实时报警和风机运行趋势的有效预测。

    Abstract:

    Large mechanical and electrical equipment has become increasingly widely use. This large mechanical and electrical equipment itself is not only expensive, its maintenance cost is also quite striking. Equipment damage, deterioration of accuracy and reduction of efficiency may cause huge losses. To effectively guarantee the normal work of the equipment, the processing quality and fault forecast, remote online detection and intelligent fault diagnosis system platform is built. The remote monitoring system integrates sensor technology, dynamic measurement and control technology, signal processing technology, fault pattern recognition and artificial intelligence technology. The field application shows that the system can effectively monitor the running status of the fan, achieve the real time alarm and running trend prediction effectively.

    参考文献
    相似文献
    引证文献
引用本文

刘秀丽,徐小力.风电场机组远程监测系统[J].电子测量与仪器学报,2017,31(5):794-801

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-27
  • 出版日期:
文章二维码