Gabor特征和字典学习算法在打印文件鉴别中的应用
CSTR:
作者:
作者单位:

1. 湖北工程学院物理与电子信息工程学院孝感432000; 2. 武汉大学电子信息学院武汉430079

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.4

基金项目:

湖北省教育厅项目(B2015033)、湖北工程学院科研项目(201511)、湖北省大学生创新训练项目(201610528004)资助


Application of gabor feature and dictionary learning algorithm in printed document identification
Author:
Affiliation:

1. School of Physics and Electronicinformation Engineering, Hubei Engineering University, Xiaogan 432000, China; 2. School of Electronic Information, Wuhan University, Wuhan 430072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了改善计算机打印文件的自动鉴别性能,提出了一种基于Gabor特征和Fisher判别准则核字典学习的激光打印文件鉴别算法。首先提取字符图像的Gabor幅值特征,同时将Gabor数据特征映射到高维核空间进行主成分分析;再将降维的特征作为初始字典,进行基于Fisher判别准则的字典学习;最后利用稀疏表示分类方法进行鉴别。在自建数据库上的实验结果表明Gabor特征在打印文件机源认证中是一种有效的鉴别特征,实验结果还验证了Gabor特征和Fisher判别准则核字典学习算法的有效性,打印文件源打印机正确鉴别率可达95.79%。

    Abstract:

    In order to improve the automatic identification performance of laser print documents, a new sparse representation algorithm based on Gabor features and fisher discrimination kernel dictionary learning was proposed for print documents identification. Proposed method first extracted the image Gabor features, and used kernel principal component analysis to reduce the Gabor features dimension. Based on the fisher discrimination criterion, a dictionary learning method whose dictionary atoms were initialized by the reduced Gabor features was performed. Sparse representation based classification was used to the identification of laser print documents. Experimental results on our database show its efficiency and effectiveness with a correct printer identification rate of 95.79%.

    参考文献
    相似文献
    引证文献
引用本文

方天红,贾涵,陈庆虎. Gabor特征和字典学习算法在打印文件鉴别中的应用[J].电子测量与仪器学报,2017,31(4):644-650

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-26
  • 出版日期:
文章二维码