Levy噪声中EMD降噪的随机共振研究
CSTR:
作者:
作者单位:

重庆邮电大学通信与信息工程学院重庆400065

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

国家自然科学基金(61371164)、重庆市杰出青年基金(CSTC2011jjjq40002)和重庆市教育委员会科研项目(KJ130524)资助


Stochastic resonance research with EMD denoising under Levy noise
Author:
Affiliation:

Communication and information engineering institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    经验模态分解(empirical mode decomposition,EMD)降低噪声的同时也削弱信号能量,并会产生虚假信号,导致信号检测存在缺陷,针对这一问题,提出Levy噪声环境下经验模态分解随机共振检测方法。通过将含噪信号进行EMD分解,对分解后信号进行叠加取平均二次采样等处理方法,使其满足随机共振要求,利用自适应算法优化系统参数,进而使处理后信号能够在双稳系统中产生随机共振,达到精确检测的目的。理论分析及实验证明在Levy噪声下,此方法能实现同一特征指数下单频信号与多频信号检测,实验表明在单频信号信噪比为-28 dB情况下能有14 dB的提高,特征指数为1.8下多频信号5 Hz频谱幅值从311.8增加到724,10 Hz频谱幅值由138.9增加到143.2。此方法对在复杂噪声环境中降低剩余噪声能量同时,提高信号能量,减少虚假信号,相对于仅仅进行EMD分解无法判断信号成分,能更好的达到检测效果。

    Abstract:

    Empirical mode decomposition(EMD)method attenuates the signals’ energy and generates false signals in decomposing signal noise, which leads to incorrect detection results. In order to solve this problem, a stochastic resonance method under Levy noise after denoised by EMD decomposition is presented in this paper. After decomposed by EMD, the noisy signals are handled by overlaying, averaging and resampling to meet the condition of stochastic resonance. An adaptive algorithm is used to optimize system parameters, and then the processed signal can generate stochastic resonance in bistable system to achieve precise detection. The theoretical analysis and experimental results prove that the method can detect singlefrequency signal and multifrequency signal under the same characteristic exponent with the Levy noise. The experimental results demonstrate that the SNR of singlefrequency signal can increase 14 dB in the case of SNR of -28 dB. The spectral amplitude of the 5 Hz spectrum is increased from 311.8 to 724 and 10 Hz spectrum amplitude is increased from 138.9 to 143.2. This method that reduces the residual noise energy and false signal can improve the signal energy in a complex noisy condition. Compared to EMD decomposition which cannot determine the signal components, this method can achieve the detection effect better.

    参考文献
    相似文献
    引证文献
引用本文

贺利芳,曹莉,张天骐. Levy噪声中EMD降噪的随机共振研究[J].电子测量与仪器学报,2017,31(1):21-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-20
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知