基于深度学习的运动心率测量系统
CSTR:
作者:
作者单位:

中南民族大学 生物医学工程学院 认知科学国家民委重点实验室武汉430074

作者简介:

通讯作者:

中图分类号:

TN29; R318.6

基金项目:

国家自然科学基金(81271659,61773408)资助项目


Sportive heart ratemeasuring systembased on deep learning
Author:
Affiliation:

Biomedical Engineering College, SouthCentral University for Nationalities, Wuhan 430074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前动态心率测量方法中存在心率监测准确度不高的缺点,提出使用深度学习算法提取光电容积脉搏波(photoplethysmograph,PPG)中的心率值。方法采集了15名身体健康的受试者不同运动速度下的PPG信号,并通过有抗干扰能力的心电(electrocardiogram,ECG)设备同步采集他们的ECG信号,将具有较强干扰的PPG信号作为堆栈自编码(stacked autoencoder,SAE)网络的输入信号,并将ECG信号作为网络标签,然后使用深度学习算法对自编码网络进行训练,以将有较强干扰PPG信号拟合为具有准确心率特征的类正弦波信号,从而实现对运动状态下干扰严重的PPG信号进行心率的提取。将SAE网络输出信号与对应ECG信号进行比较,结果显示,运动心率测量的平均误差为1.165 8 bpm,表明深度学习算法对于心率测量的有效性,也为运动心率信号测量提供了一种新的途径。

    Abstract:

    The main disadvantage of currentmethods ofdynamic heart rate measurement is the low accuracy. In order to improve the problem, deep learning algorithm was introduced to extract the photoplethysmograph(PPG) of heart rate value. In this paper, the pulse signals of 15 healthy subjects participated in the experiment was acquired under the different velocityas the input of stacked autoencoders network (SAE). At the same time, electrocardiograph(ECG) signal as the label of that network was gathered by a standard ECG collector whichhas high antiinterference. Combining with the deep learning algorithm, SAE was trained,in which the pulse signal with strong interference was fitted to thesignalof sinelike wave with the characteristic of accurate heart rate, in order to realize the extraction of heart rate under the condition of serious disturbance under sports conditions.The experimental results show that compared with the output signal of SAE, the proposed method obtains smaller error value of the heart rate (1.165 8 bpm), which showsthe effectiveness of heart rate measurementusing deep learning algorithm, and provides a new way for the sportiveheart ratemeasurement.

    参考文献
    相似文献
    引证文献
引用本文

荣凡稳,郑伟,陈冉,高军峰.基于深度学习的运动心率测量系统[J].电子测量与仪器学报,2017,31(12):1912-1917

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-24
  • 出版日期:
文章二维码