管道腐蚀视觉测量图像边缘检测算法研究
CSTR:
作者:
作者单位:

内蒙古科技大学信息工程学院包头014010

作者简介:

通讯作者:

中图分类号:

TP391.41;TN957.52

基金项目:

国家自然科学基金(61362023)资助项目


Research on image edge detection algorithm for pipeline corrosion visual measurement
Author:
Affiliation:

Department of Information Engineering College, Inner Mongolia University of Science and Technology, Baotou 014010, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现管道内表面腐蚀图像的边缘检测,分析了经典的边缘检测方法,针对其存在检测精度低和抗噪声性能差等缺点,研究了一种基于BP神经网络的图像边缘检测算法。利用标准图像和经传统边缘检测算法检测得到的边缘图像作为输入输出数据,并用大量数据进行训练,构建了可实现图像边缘检测的BP神经网络。用训练好的神经网络实现管道内表面腐蚀图像边缘检测,并与传统的边缘检测算法检测结果进行了比对,实验结果表明,该算法可明显提高检测精度及抗噪声能力,具有广泛的适用性。

    Abstract:

    In order to detect the edge of pipeline inner corroded image, the classic edge detection method is analyzed. And it is found that the detection precision is not high and the antinoise performance is poor. On this basis, an image edge detection algorithm based on BP neural network is researched. To build the BP neural network, standard image is made as input data, and the edge image of standard image detected by traditional edge detection operator is made as output data. And a large amount of data is used for training. Finally, the experimental result of the edge detection of the corroded image inside the pipeline detected with the BP neural network method is given, and it is compared with the result of traditional edge detection algorithm. The results show that the proposed algorithm can improve the detection precision and antinoise ability significantly, and it is a kind of algorithm with extensive adaptability.

    参考文献
    相似文献
    引证文献
引用本文

李忠虎,张琳,闫俊红.管道腐蚀视觉测量图像边缘检测算法研究[J].电子测量与仪器学报,2017,31(11):1788-1795

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-08
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知