摘要:在聚变装置真空检漏领域中,未来聚变装置涉氚运行,检漏人员无法进入装置检漏,这使得这项任务极其困难和耗时。 为实现聚变装置泄漏设备的快速准确检测,本文以 6 自由度机械臂为研究对象,提出了一种 GV2-YOLOv5 的真空设备检测方法 用于真空检漏机器人对真空设备进行识别和定位喷氦。 在该方法中,结合轻量级 GhostNetV2 网络构建 C3GhostV2 模块,同时使 用轻量的 Ghost 卷积提取目标特征,从而降低模型参数量,提高计算速度;在特征融合网络中添加 Bottleneck Transformers 和 ECA 注意力机制,提高网络特征提取能力以及加强模型通道特征。 实验结果表明,在自制数据集上,改进后的模型平均精度为 93. 2%,相比 YOLOv5s 提高了 1. 4%,模型参数量减少了 29. 5%,检测速度为 92 fps,满足实时性与准确性的需求,为真空检漏机 器人目标识别与定位提供了一种的解决方案。