摘要:当前基于卷积神经网络(CNN)的手势识别研究集中于增加网络深度,较少关注改善样本数据分布带来的性能提升。 针对此类问题,提出一种量化表面肌电信号(sEMG)特征相关性的肌电特征矩阵(EFM)样本输入有效通道注意力(ECA)机制 CNN,用于识别 NinaproDB1 中 52 类手势。 首先使用时间窗截取低通滤波后的 sEMG,计算多种信号时域特征;然后利用笛卡尔 积组合并相乘不同特征,对特征相乘值进行归一化后得到 EFM。 同时,引入 ECA 机制使网络关注重要的深层特征,从而提升手 势分类效果。 分别输入 sEMG、肌电时域特征和 EFM 到注意力机制 CNN 进行手势识别,EFM 识别准确率最高,达到了 86. 39%, 高于近年来手势识别研究方法精度。 验证了提出方法的有效性,为多类别手势准确分类提供可行新方案。