改进 YOLO v7 算法下的监控水域环境人员识别研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183;TN29

基金项目:

湖南省自然科学基金杰出青年基金项目(2022JJ10017)、珠海云洲智能科技有限公司委托课题(H202191400377)项目资助


Research on the personnel recognition in monitored water area based on improved YOLO v7 algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于水域监控系统智能化的发展需求,提出了一种监控水域环境下人员识别算法。 在水域场景数据采集、数据清洗与 标记后,自主构建了一套监控水域场景下的人员类别数据集 YZ-Water4,共 8 092 张图片和 24 011 个标签。 基于目标检测算法 YOLO v7 的性能基础,针对水域场景特点,提出了适用于水域环境的目标检测算法 YOLO-WA( you only look once-water area)。 首先,使用更适合视觉任务的 FReLU 激活函数取代 YOLO v7 算法中激活函数;其次将注意力机制融合到算法网络骨架中,提升 算法的特征提取能力;最后,选择 SIOU 损失函数替换 YOLO v7 算法中的 CIOU 损失函数以优化算法训练过程。 实验结果表明, YOLO-WA 与原算法相比,在水域人员类别数据集上识别精确率由 82. 3%提升到 86. 9%,召回率由 92. 0%提升到 92. 8%,平均 精度从 88. 4%提高到 90. 6%,检测速度达到了 85 fps,满足实时运行的精度与速度要求。

    Abstract:

    Based on the development demand of intelligent water area monitoring system, a personnel recognition algorithm for monitored water area is proposed. After data collection of the water area scene, data cleaning and labeling, a personnel category dataset YZ-Water4 under the monitored water area scene was independently constructed, with a total of 8 092 images and 24 011 tags. Based on the performance of the object detection algorithm YOLO v7 and the characteristics of the water area scene, object detection algorithm YOLOWA (you only look once-water area) for water environment is proposed. First, the FReLU activation function which is proposed for visual tasks is used to replace the activation function in YOLO v7 algorithm. Secondly, the attention mechanism is integrated into algorithm to improve the feature extraction ability of the algorithm. Finally, SIOU loss function is chosen to replace CIOU loss function in YOLO v7 algorithm to optimize the training process. The experimental results show that compared with the original algorithm, YOLO-WA has increased the precision rate from 82. 3% to 86. 9%, recall rate from 92. 0% to 92. 8%, mean average precision from 88. 4% to 90. 6%, and the processing speed is 85 frame per second, meeting the accuracy and speed requirements of real-time run.

    参考文献
    相似文献
    引证文献
引用本文

吴兴辉,何赟泽,周 辉,程 亮,丁美有.改进 YOLO v7 算法下的监控水域环境人员识别研究[J].电子测量与仪器学报,2023,37(5):20-27

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-18
  • 出版日期:
文章二维码