光学电压传感器温度响应特性分析与实验研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN98;TM933

基金项目:

国家自然科学基金(51277066)项目资助


Analysis and experimental study on temperature response characteristics of optical voltage sensor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光学电压传感器面临温度稳定性问题。 本文以 BGO 晶体的 Pockels 效应模型为基础,结合热光效应等推导出光学电压 传感器在多物理场作用下的温度响应模型,并对输出信号进行频谱分析,得到温度对传感器输出的影响规律,即由温度引起的 输出漂移属于低频分量。 在卡尔曼滤波降噪的基础上, 提出了一种基于频谱分析的高通滤波温度补偿方法,通过滤除低频分 量提高温度稳定性,并进行标定实验和温度响应特性实验。 实验结果表明,传感器在[0℃ ,50℃ ]温度范围内输出电压测量精 度优于±1. 79%,与同平台下 BP 神经网络温度补偿方法进行对比,该方法易于实现且有效地抑制了温度漂移的影响。

    Abstract:

    Optical voltage sensors face the problem of temperature stability. Based on the Pockels effect model of BGO crystal and the thermo-optic effect and so on, the temperature response model of the optical voltage sensor under the action of multi-physical fields is derived and the spectrum analysis of the output signal is carried out to obtain the effect law of temperature on the output of the sensor, i. e. , the output drift caused by temperature belongs to the low frequency component. Based on the Kalman filtering noise reduction, a high-pass filtering temperature compensation method based on spectral analysis is proposed to improve the temperature stability by filtering out the low frequency components, and calibration experiments and temperature response characteristics are conducted. The experimental results show that the accuracy of the output voltage measurement is better than ±1. 79% in the temperature range of [0 ℃ , 50 ℃ ], and the method is easy to implement and effectively suppresses the influence of temperature drift when compared with the BP neural network temperature compensation method in the same platform.

    参考文献
    相似文献
    引证文献
引用本文

陈胜硕,胡杰祥,李 志,康世佳,李岩松,刘 君.光学电压传感器温度响应特性分析与实验研究[J].电子测量与仪器学报,2023,37(3):169-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期:
文章二维码