摘要:针对轻量语义分割算法应用于无人机高分辨率交通场景图像分割时存在边缘信息模糊、小目标特征提取准确性较差的 问题,提出一种融合注意力机制与重影特征映射的轻量级语义分割算法。 首先在 BiSeNet V2 算法语义分支 8 倍和 16 倍下采样 过程嵌入混合注意力模块,重新分配深层特征图权重,增强局部关键特征提取能力;然后采用重影特征映射单元优化传统卷积 层,进一步降低运算成本;最后使用动态阈值损失函数监督训练,调节高损失困难样本训练权重。 利用 UAVid 数据集对改进后 的算法进行训练并测试,发现算法平均交并比(mean intersection over union,mIoU)为 52. 7%,较改进前的模型提升 7. 8%,且当输 入图像尺寸为 1 280×736 时推理速度达到 81. 6 FPS,满足实时分割要求。 结果表明,该算法能较好适应复杂交通场景,有效改 善边缘信息模糊和小目标分割准确性较差的问题。