CEEMDAN 与 GCN 结合的配电变压器故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM41;TN06

基金项目:

福建省自然科学基金(2021J01633)项目资助


Fault diagnosis of distribution transformer based on CEEMDAN and GCN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对配电变压器故障特征提取困难、故障识别难度大的问题,提出一种将振动信号、自适应噪声完备集合经验模态分解 (CEEMDAN)与图卷积神经网络(GCN)三者有机结合的故障诊断方法。 首先,采用 CEEMDAN 对来自加速度传感器的振动信 号进行处理,获得一组固有模态分量(intrinsic modal function);其次求取边际谱信息作为特征向量;然后,对特征向量矩阵构造 无向加权完全图,并使用改进灰狼优化算法对高斯核带宽进行寻优;最后,搭建一个具备多通道和多连通的改进 GCN 模型进行 特征二次挖掘与故障分类。 与此同时,还在模型中加入一种名叫“峰值因子”指标实现对未知类型故障的辨识。 在实例分析 中,分别对油浸式和干式变压器进行故障模拟,提取不同状态的样本进行测试。 实验结果表明,所提方法对油浸式和干式变压 器的故障识别准确率分别达到 97. 73%和 95. 6%,优于其他两种对比方法。 在面对未知类型故障以及运行工况发生变化时,也 具备较高是识别能力。

    Abstract:

    Aiming at the difficulty of fault feature extraction and fault identification of distribution transformers, a fault diagnosis method combining vibration signals, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and graph convolution neural networks (GCN) was proposed. Firstly, the vibration signal from the acceleration sensor is processed by CEEMDAN to obtain a set of intrinsic modal functions. Secondly, its marginal spectrum information is taken as the feature vector. Then, an undirected weighted complete graph is constructed for the eigenvector matrix, and an improved gray wolf optimization algorithm is used to optimize the Gaussian kernel bandwidth. Finally, an improved GCN model with multi-channel and multi-connectivity is built for feature secondary mining and fault classification. At the same time, an index called peak factor is added to the model to realize the identification of unknown faults. In the case analysis, the fault simulation of oil-immersed transformer and dry transformer is carried out respectively, and samples of different states are extracted for testing. The experimental results show that the accuracy of the proposed method for oilimmersed transformer and dry transformer fault identification is 97. 73% and 95. 6%, respectively, which is better than the other two comparison methods. In the face of unknown types of faults and operating conditions change, it also has a high ability to identify.

    参考文献
    相似文献
    引证文献
引用本文

洪 翠,邱仕达,高 伟. CEEMDAN 与 GCN 结合的配电变压器故障诊断[J].电子测量与仪器学报,2022,36(12):86-96

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-29
  • 出版日期:
文章二维码