摘要:针对变压器故障诊断精度低的问题,本文提出一种改进寄生捕食算法(IPPA)优化概率神经网络(PNN)的电力变压器 故障诊断模型,首先利用主成分分析(PCA)对故障数据进行数据降维减少无效特征,然后利用混沌反向学习,柯西变异算子和 融合贝塔分布的线性递减函数的权重等多策略改进寄生捕食算法( IPPA),提高其优化能力,并使用改进后的 IPPA 算法优化 PNN 网络的平滑因子,以提高 PNN 的分类精度和鲁棒性。 最后将 PCA 处理后的数据输入到 IPPA-PNN 模型中进行故障诊断 并以变压器数据为依据进行测试,测试结果表明,IPPA-PNN 模型准确率达到 93%相比于 PPA-PNN 和 PSO-PNN 模型提高了 7%和 10%能够有效地提高变压器的故障诊断性能。