摘要:现有的针对 PCB 裸板的缺陷检测方法存在精确度低、实时性差且难以在移动端部署等问题,本文以 YOLO( you only look once)v4 算法为基本框架并对其进行改进,提出了一种专门针对 PCB 裸板的缺陷检测算法。 针对 YOLOv4 算法难以在移 动端部署的问题,采用 GhostNet 取代 CSPDarknet53 以轻量化整个检测网络。 为弥补 YOLOv4 算法在多尺度特征融合方面的性 能不足,提出了一种双向自适应特征融合网络 AF-BiFPN 取代 PANet 网络。 为进一步提高模型的检测精度,在 AF-BiFPN 特征 融合网络的采样的过程中插入 m-ECANet 通道注意力机制。 实验结果证明,改进后的 YOLOv4 算法的模型大小为 18. 64 MB,检 测的平均精度(mean average precision,mAP)为 98. 39%,检测速度为 62. 23 FPS,可为实际 PCB 裸板检测提供理论指导。