摘要:航空自耦变压整流器(auto-transformer rectifier unit, ATRU)是飞机高压直流电网关键电能变换装置,在运行过程中受高 温、机械应力、荷载波动等因素持续影响,其内部元件可能出现相应故障,进而威胁飞机可靠运行及持续适航。 针对 ATRU 整流 部分故障信号频谱难以区分、诊断准确率不高问题,提出一种遗传算法(genetic algorithm,GA)与贝叶斯正则化反向传播神经网 络(Bayesian regularisation back propagation neural network,BRBPNN)相结合的故障诊断识别方法。 首先,实现 ATRU 故障仿真, 以时频分析方式处理所得信号,从而挖掘不同故障状态的特征信息;随后采用 GA 算法优化 BRBPNN 初始权阈值并建立最优 GA-BRBNPNN 诊断模型,将特征样本输入诊断模型进行故障分类识别,测试模型性能;最后,搭建故障模拟实验平台对实测数 据进行模型验证。 实验结果分析可知,对于仿真故障,该模型诊断准确率可达 99. 46%,对于实测故障,该模型可全部诊断识别 待测样本;由此表明提出的 GA-BRBPNN 优化模型诊断效果好,具有较高实用价值。