摘要:针对短时交通流时间序列非平稳性、空间相关性和时间依赖性的特点,为提高短时交通流预测模型的预测精度和收敛 速度,该文提出了一种基于改进的变分模态分解(VMD)、图注意力(GAT)网络和门控循环单元(GRU)网络的交通流量组合预 测模型。 首先,利用互信息熵(MI)改进的变分模态分解算法,将交通流量时间序列分解成一系列调幅调频信号子序列,降低了 时序信号的非平稳性,提高后续预测模型的预测精度;然后,将其输入图注意力网络,捕捉路网邻近节点的交通流量对中心预测 节点交通流量不同程度的影响,从而实现交通流量序列的空间相关性建模,进一步提高模型预测精度;接着,将交通流量分量子 序列分别送入门控循环单元网络,捕捉其时间依赖性,并使用改进的 RMSPRop 优化算法迭代寻优,在提升优化算法收敛速度的 同时提高了模型的预测精度;最后,结合各分量子序列的预测值,作为预测模型的最终输出。 实验采用 RTMC 系统交通数据,结 果表明,该文提出的改进 VMD-GAT-GRU 时空融合组合预测模型相较于 LSTM、GCN 和 GAT 基准模型,平均绝对误差(MAE)分 别降低 9. 35、4. 12、4. 09,平均绝对百分比误差(MAPE)分别降低 16. 42%、7. 32%、8. 1%,优化算法的收敛速度和组合模型的预 测精度均得到有效提升。