燃气轮机深度卷积生成对抗故障样本生成研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN07;TK477

基金项目:

国家自然科学基金(51975058)项目资助


Research on fault sample generation of gas turbine based on deepconvolution generative countermeasures
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对应用深度学习进行燃气轮机故障诊断时,因故障信号数据不易获取,使得正常运行样本多、故障样本少,影响故障 诊断准确率的问题,提出了一种采用深度卷积生成对抗学习对燃气轮机故障样本进行扩充的方法。 根据燃气轮机振动信号特 点,利用快速傅里叶变换、经验模态分解、解调预处理故障信号,提取故障频域特征并选取特征值指标,将振动信号转为二维灰 度图像,通过正交梯度惩罚算法训练深度卷积生成对抗故障样本生成模型。 实例结果表明,使用所提方法获得 CWRU 轴承数 据集生成样本测试准确率为 98. 01%;某型燃气轮机生成样本测试准确率为 97. 43%,同条件下均优于其他主流故障样本生成方 法,验证了所提故障样本生成方法的有效性和优越性。

    Abstract:

    Aiming at the problem that when applying deep learning for gas turbine fault diagnosis, the fault signal data is difficult to obtain, resulting in many normal operation samples and few fault samples, which affect the accuracy of fault diagnosis. A method for augmenting gas turbine fault samples using deep convolutional generative adversarial learning is proposed. According to the characteristics of the gas turbine vibration signal, the fault signal is preprocessed by using fast Fourier transform, empirical mode decomposition and demodulation, and the fault frequency domain features are extracted and the eigenvalue index is selected, and the vibration signal is converted into a two-dimensional gray image. The orthogonal gradient penalty algorithm is used to train the deep convolutional generative adversarial fault sample generation model. The example results show that the test accuracy rate of CWRU bearing dataset obtained is 98. 01%, and the test accuracy rate of a certain type of gas turbine’s fault samples generated by the proposed method is 97. 43%, which are better than other mainstream fault sample generation methods under the same conditions. The effectiveness and superiority of the proposed fault sample generation method are verified.

    参考文献
    相似文献
    引证文献
引用本文

王政博,王红军,张 翔,崔英杰,苏静雷.燃气轮机深度卷积生成对抗故障样本生成研究[J].电子测量与仪器学报,2022,36(6):82-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码