摘要:针对传统的载荷标定方程计算机翼蒙皮载荷精度低的问题,提出了一种基于深度学习的机翼蒙皮载荷计算新方法。 考 虑真实机翼蒙皮受力复杂,首先建立了机翼蒙皮试验件模型,使用 Ansys 仿真软件对试验件进行有限元分析,获得应变与载荷 仿真数据,并对仿真数据进行数据清洗与预处理;其次,构建深度神经网络模型,将应变与载荷作为神经网络模型的输入与输出 值,采用 Adam 算法优化提出的载荷计算模型;最后,在测试集上对载荷值进行预测,使用平均相对误差与绝对值差作为评价指 标。 实验结果显示,基于深度学习的载荷计算方法在小载荷数据上平均绝对误差为 0. 081 N,在正常载荷数据上的平均相对误 差为 0. 063 8%;与传统载荷计算方法比较,本文提出的新方法计算的载荷精度明显优于传统方法。