基于 LSTM 的电子系统间歇故障严重程度识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN407

基金项目:

国家自然科学基金(11875149,61565007,61762047)项目资助


Intermittent fault severity recognition method for electronic systems based on LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    间歇故障的累积会导致电子系统健康状态退化,正确识别电子系统间歇故障严重程度是保障系统安全运行、降低维护 成本的关键。 针对间歇故障特征难以准确提取导致传统识别方法失效的问题。 本文提出了一种基于长短期记忆(LSTM)网络 的间歇故障严重程度识别方法,首先将间歇故障注入电子系统获取足量不同严重程度的训练数据。 再用这些数据训练由 LSTM 网络与 softmax 全连接层网络构建的严重程度识别模型。 最后,通过对典型电路的故障注入,使用训练好的 LSTM 网络对间歇 故障严重程度进行识别,实验结果证明了方法的有效性和可行性。

    Abstract:

    The accumulation of intermittent faults will cause the deterioration of the health of the electronic system. Correctly identifying the severity of intermittent faults can ensure the safe operation and reduce maintenance costs of the electrical systems. However, it is difficult to extract intermittent fault features accurately, which leads to the failure of traditional identification methods. This paper proposes a method for identifying the severity of intermittent faults based on LSTM network. First, the intermittent faults are injected into the electronic system to obtain sufficient training data of different severity. Then use these data to train the classifier which is constructed by LSTM network and the softmax fully connected layer network. Finally, by injecting faults into typical circuits and using the trained LSTM network to identify the severity of intermittent faults, the experimental results prove the effectiveness and feasibility of the method.

    参考文献
    相似文献
    引证文献
引用本文

李 晟,邓江云,周兴龙,李玉晓,徐飞洋.基于 LSTM 的电子系统间歇故障严重程度识别方法[J].电子测量与仪器学报,2022,36(3):139-148

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码