摘要:为了减小神经网络在机械设备故障预示与健康管理(PHM)过程中对大量完备数据的依赖,针对数据稀少情况下的滚 动轴承故障诊断问题,提出了一种多源域迁移学习方法。 模型采用一维卷积神经网络(1D-CNN),以原始振动信号作为模型的 输入,利用两个不同的源域数据依次对模型进行预训练,使用目标域数据对预训练模型进行微调,提高对目标域的识别精度。 采用频询实验台实测数据及西储大学数据集,在目标域故障样本不足的情况下分别对模型的分类精度、训练速度、结果稳定性、 多源域有效性进行验证,并与卷积神经网络(CNN)、迁移成分分析(TCA)、联合分布适配(JDA)、支持向量机(SVM)的诊断结果 进行对比。 实验结果表明,在故障数据稀少时,模型能达到较高的分类精度,在目标域样本数量不同的 3 种情况下,多源域迁移 方法分类精度分别达到了 97. 71%、96. 28%、94. 18%,并且模型有着较快的收敛速度,较好的稳定性。